

Scintillation Detector for Muon Imaging System

Zheng Liang

State Key Laboratory of Particle Detection and Electronics

University of Science and Technology of China

From X-ray to muon imaging

- Medical X-ray imaging:
 - Use X-ray photons as probe
 - Reconstruct X-ray absorption map in different tissues

- Muon imaging:
 - Use cosmic ray muons as probe, penetrating far deeper
 - High penetration
 - No extra radiation
 - Reconstruct muon absorption or scattering

Muon scattering tomography (MST)

9/7/23

Detector used in muon tomography

ATLAS silicon muon tracker pitch = 80µm

Micromegas developed by USTC

- Measuring ingoing & outgoing tracks
 - At least 4 layers 2-D position detector
 - Large detection area

Silicon tracker

- Best performance: $< 80 \ \mu m$
- Extremely high cost

- Gas detectors
 - Higher spatial resolution: $\sim 100 \ \mu m$
 - Need gas & HV supply system

Muon Portal Project by INFN

- Scintillation detectors
 - Pitch ~ 10 mm, spatial resolution ~ 3 mm
 - Robust, lower cost, high efficiency, stable

9/7/23

PSD for muon tomography @ USTC

- Detector design:
 - Plastic scintillator
 - WLS fibers
 - Read out by SiPM

- Pitch: p = 10 mm
- Integrated slab
- Isolated prisms: rectangle, triangle

GEANT4 Simulation results for 3 prototype detectors

Detector structure	Simulated spatial resolution (mm)
Slab	5.3
Rectangle	2.9
Triangle	1.6

Performance of prototype detector

Detector assembling

• Prototype detector:

- Sensitive area: $15 \text{ cm} \times 15 \text{ cm}$ •
- Pitch: p = 10 mm
- Thickness: 10 mm •
- Electronic board:
 - CAEN® DT5702
 - Bias supply, signal shaping & discrimination, time & charge measurement

MCAE

Electronic board

Spatial resolution measurement

Comparison of simulation and measurement			
Detector	Simulated spatial	Measured spatial	
structure	resolution (mm)	resolution (mm)	
Slab	5.3	6.4	
Rectangle	2.9	3.3	
Triangle	1.6	1.7	
7heng Liang et al 2020 UNST 15 (07033			

Zheng Liang et al 2020 Jilv31 15 C07033

9/7/23

Precise correction for triangular prism

T.Q. Hu *et al* 2020 *JINST* **15** P11017

Detector upgrade

- Larger detection area:
 - Sensitive area: 50 cm×50 cm
 - Higher acceptance
 - Hard to shape & groove
- Better Spatial resolution
 - Adopt triangle cross section
- Better layout
 - Double fibers in one strip
 - Convenient for SiPM coincidence

- Improvement on photon collection:
 - Wider fiber (d = 1.5 mm)
 - High reflective coating:
 - Tyvek paper or TiO₂
 - Reflective 3M[™] Enhanced Specular Reflector film (far end)

Fiber encoding

- Encode readout
 - Group 32 fibers from neighboring 16 strips
 - Add signals from different strips
 - 2 fibers in 1 strip, labeled as A, B
 - 4 fibers from A or B fed into 1 SiPM
 - Coincidence of A & B is required
 - Compression ratio: 1/4

SiPM & Fibers are connected through air coupling

- 3D printed components:
 - Air coupling between SiPM & fibers
 - Fiber encoding component
 - Fibers inserted from one side
 - Avoid tangling of fibers

Readout system

FEE board scheme

- Electronic board:
 - Weeroc ® CITIROC 1A: signal shaping, discrimination
 - XILINX ® ZYNQ:
 - PL: FPGA part, TDC & Logic
 - PS: control part, CPU
 - ADC: charge measurement
 - Provide bias, signal processing, charge & time measurement for 32 channels

Material and processing

EJ-200 EMISSION SPECTRUM

- Scintillator: Eljen® EJ-200
- Wavelength shift fiber: Kuraray ® Y-11
- SiPM: Hamamatsu ® S13360-3075PE

Fiber polishing

Scintillator machining and wrapping

- Fiber polish:
- Scintillator:
 - Machining: 2 polished grooves inside triangular prism
 - Wrapping: Tyvek paper with shrink film
- Test all material before assembling for QA

Detector layout & assembling

Layout of Module in Detector (left), encoder (right top), reflector (right down)

- A 2-D position detector:
 - Put inside 80 cm×80 cm light tighten box
 - 2 layers consist of 6 modules, 96 strips, 192 fibers, and 2 electronic boards
- A module:
 - 16 scintillation strips & 32 fibers in the same encoding group
 - 8 SiPMs & related electronic channels
 - Coincidence inside

Performance of detector component

- Measure all characteristics of electronic board and restore in database
 - Preamplifier gain
 - Bias voltage

- ronic SPE resolution of SiPM: $\sigma_{SPE} = \sigma_{SPE}$
 - SPE resolution: $\frac{\sigma_{SPE}}{Gain} = 7.0\%$
 - Light collection in 1 fiber:
 - ~ 50 photons/MeV

estimate photon collection

•

. . .

Detector module test

Layout of test system & trigger logic of the system

- A module has been tested under cosmic ray
 - 16 strips, with 16 cm×55 cm sensitive area
 - Pitch 11 mm
- 2 prototype detectors:
 - Trigger & track measurement

- Purposes:
 - Verify encoding design
 - Verify ESR reflection film
 - Measure rough spatial resolution

9/7/23

Test results

- Decode & calculate position separately successfully
- Photon collection efficiency increase 40% with ESR film
- Measure overall spatial resolution:
 - pitch p = 11mm

9/7/23

• $\sigma_x = 2.0 \text{ mm} (0.18 \text{ pitch})$

Summary

>Plastic scintillation detector for muon tomography system has been studied

- Detectors with triangular cross section show the best performance in 3 prototype detectors (1.7 mm, 0.17 pitch) with 15 cm×15 cm area
- > Upgraded detector with 50 cm \times 50 cm detection area:
 - > Overcome difficulties in machining
 - > Adopt encoding readout design, reduce electronic cost to 1/4
 - Electronic boards give SPE resolution better than 7%
 - Measured rough resolution is 2.0 mm (0.18 pitch), expect to achieve 0.1 pitch with additional correction for dead gap between strips

Outlook

> Expand detection area:

- Challenge:
 - Length (60 cm) is limited by machining
- Solutions:
 - Splice multiple scintillation strips
 - Replace plastic scintillator with liquid organic scintillator

