

Gd-PMMA

a novel neutron tagging technology for low background detectors

Yi Wang Institute of High Energy Physics, CAS On behalf of the DarkSide collaboration TIPP 2023 Cape Town, South Africa 09/07/2023

DarkSide-20k Overview

- DarkSide-20k:
 - Direct search for WIMP dark matter with argon;
 - Dual-phase argon time projection chamber (TPC).
- Newly designed active neutron veto as a solution for achieving instrumental background-free;
- New material proposed: Gadolinium doped acrylic (Gd-PMMA).

Physics Prospective of DarkSide-20k

Background Mitigation Strategies

Goal: <0.1 neutron in Rol (30~200 keVnr) with 200 t-y exposure.

Source	Strategies & Tools		
β/γ	UAr, PSD, material selection		
Radon progeny	Surface cleaning, Rn suppressed air		
Radiogenic neutron, mostly (α, n)	Neutron veto, fiducialization, material selection		
Cosmogenic neutron	Muon veto		
Neutrino induced NRs	irreducible		

Fiducialization and PSD

- TPC: Scintillation (S1) + Ionization (S2);
- 3D positioning using Tdrift and S2 distributions;
- S1 Pulse shape discrimination (PSD):
 - De-excitation time: singlet 6 ns, triplet 1.5 us;
 - ER background rejection > 1x10⁸;
 - f90: ratio of light in the first 90 ns (S1).

f90~0.7

150

100

TIPP 2023, Cape Town, 09/07/2023

wangyi90@ihep.ac.cn

Using Underground Argon

See Roberto Santorelli's talk on Wednesday!!

- Atmospheric argon (AAr) has intrinsic ³⁹Ar radioactivity ~1 Bq/kg;
- β decay with 565 keV endpoint, 269 years half-life;
- ³⁹Ar activities set the threshold at low energies.

- Argon from underground sources has significantly lower ³⁹Ar concentration than AAr;
- CO2 well in Colorado, USA;
- 160 kg UAr extracted for DarkSide-50:
 ≫³⁹Ar reduction factor ~1400;
- 120 tonnes UAr to be extracted and purified for DarkSide-20k.

TIPP 2023, Cape Town, 09/07/2023

The DarkSide-20k Detector

The Inner Detector

- TPC + neutron veto;
- Octagonal shape dual phase argon TPC:
 - Active UAr mass: 49.7 tonnes;

About high voltage of the DarkSide-20k TPC,
 Neutron veto: see Tyler Erjavec's talk on Wednesday!!

- Active UAr mass: 32 tonnes.
- SiPM as the photosensor;
- TPC: 2112 channels:
- Veto: 480 channels.

More details about the SiPM for DarkSide-20k, see Francesco Di Capua's talk!!

Active Neutron Veto

- Gd-PMMA parts:
- ➤TPC wall, 8 pieces
- Many Gd-PMMA bricks embedded in the top and bottom supporting structures (optical planes);
- Active volume is 4π covered by Gd-PMMA;
- 40 cm thick UAr buffer in the veto volume;
- UAr in the TPC.

Active Neutron Veto

- 120 veto Photo Detection Units (vPDU) for the UAr veto buffer;
- 480 readout channels in total.
- Reflectors:
 - Enhanced Specular Reflector (ESR) for both veto and TPC;
- Wavelength shifters:
 - TPB for TPC;
 - PEN for veto.

Active Neutron Veto

- Gd-PMMA -> Hydrogen + Gadolinium:
 ➢ Hydrogen -> single γ ~2.2 MeV;
 ➢ Gadolinium -> multiple γ upto 8 MeV.
- Produced γ rays interact in UAr in both veto buffer and TPC;
- Scintillation lights detected by SiPMs in both veto buffer and TPC.

TIPP 2023, Cape Town, 09/07/2023

Neutron Tagging Inefficiency

- Optimizing the gadolinium concentration and the thickness of Gd-PMMA for enhanced neutron efficiency.
- TPC light yield: 10 p.e./keVee;
- Veto light yield: 2 p.e./keVee.
- Gd concentration: 1 wt%;
- Thickness of Gd-PMMA: ≥ 15 cm;
 Neutron tagging inefficiency ~1%;
- < 0.1 n in Rol with 200 ty exposure.

2

Development of Gd-PMMA

- Three approaches have been developed for Gd-PMMA:
 - Gd2O3 recipe: mechanically mix Gd2O3 nano grain with MMA for polymerization;
 - Gd(acac)3 recipe: "directly" dissolve Gd(acac)3 into MMA for polymerization;
 - Gd(MAA)3 recipe: "indirectly" dissolve Gd(MAA)3 into MMA for polymerization.

TIPP 2023, Cape Town, 09/07/2023

s highly

wangyi90@ihep.ac.cn

Gd(MAA)3

- Gadolinium methacrylate;
- It can be dissolved in liquid MMA monomer using a dedicated dissolving recipe;
- Good chemical stability due to the molecular connection between Gd(MAA)3 and MMA;
- Max. ~25% Gd(MAA)3 can be dissolved in liquid MAA (~10% Gd by mass fraction).

The dissolving recipe was developed by Yangzhou University:

14

Gd-PMMA

- Polymerization of Gd(MAA)3 doped liquid MMA;
- A dedicated initiator recipe was developed by Donchamp to prevent selfinhibition and implosion during polymerization;
- Another recipe has been developed for applications requiring high transparency.

Some Properties of Gd-PMMA

Mechanical properties (Gd 1 wt%):

	Data from Yangzhou University	Data from Donchamp	Pure acrylic
Young's modulus	2-3 GPa	2.15 GPa	1.8-3.1 GPa 2
Impact strength	$14-19 { m ~KJ/m^2}$	$15 \ { m KJ/m^2}$	$16-20 \text{ KJ/m}^2$ a
Tensile strength	nrelli	$61 \mathrm{MPa}$	48-76 MPa [2]

^aData from the Donchamp database.

Transparency measurement on samples produced using both the nominal transparency recipe and the high transparency recipe, with 405 nm light.

Gd-PMMA for DS-20k

- No transparency requirement;
- 25~30 tonnes of Gd-PMMA panels are required.
- Challenge of producing large panels:
 - Thickness requirement: ~17 cm;
 - Stable production yield;
- Solution:
 - Multi-layer lamination to reach the required thickness;
 - The cooling test, in which a 17 cm laminated sample (consisting of 6 layers), was slowly immersed in liquid argon, was successful.

Radiopurity Control

- 5N Gd2O3 from ShinEtsu is selected for Gd-PMMA production for DarkSide-20k;
- The Gd-PMMA panels will be produced in the radiopure line at Donchamp constructed by the JUNO experiment.

ShinEtsu 5N Gd2O3		JUNO PMMA		Gd-PMMA (under validation)	
lsotopes	mBq/kg	Isotopes	mBq/kg	Isotopes	mBq/kg
Th232_Ra228	< 0.5	Th232_Ra228	< 0.14	Th232_Ra228	< 0.33
Th232_Th228	0.4 ± 0.1	Th232_Th228	< 0.078	Th232_Th228	< 1
U238_Ra226	0.5 ± 0.1	U238_Ra226	0.05 ± 0.02	U238_Ra226	< 1.3
U238_Th234	< 33	U238_Th234	< 2.1	U238_Th234	< 8.3
U238_Pa234m	< 7.4	U238_Pa234m	< 1.8	U238_Pa234m	< 49
U235	< 0.31	U235	< 0.07	U235	< 0.54
K40	4±1	K40	< 0.41	K40	< 11
Cs137	< 0.079	Cs137	< 0.025	Cs137	< 0.12

Radiopurity assay at LNGS.

Summary

- DarkSide-20k uses liquid argon for dark matter detection.
- A novel active neutron veto detector with Gd-PMMA is designed.
- Gd-PMMA based on the Gd(MAA)3 recipe is developed.
- Gd-PMMA panel production for DarkSide-20k is under preparation.

Beyond Gd-PMMA:

Lead-doped acrylic: successfully developed! Boron-doped acrylic: development in progress... Boron-doped plastic scintillator: development in progress...

For more information, please contact wangyi90@ihep.ac.cn.

