TEMPUS: a Timepix4based detector system for Photon Science

DESY Photon Science Detector Group

J. Correa, A. Ignatenko, D. Pennicard, S. Fridman, S. Lange, H. Graafsma – DESY

S. Smoljanin, J. Lange, J. Schmehr, H. Klink, A. Beckmann – X-Spectrum GmbH

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

DESY Photon Science

Detector Group

- > Storage rings (SR):
 - PETRA III
 - PETRA IV
- > Free Electron Lasers (FELs):
 - FLASH
 - Eu.XFEL
- Electron and ion detection for experiments in and around our campus

Operation Modes

- > Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration TSMC 65nm
 - Timepix4v2 received from foundry in Sept 2021

Photon counting and frame readout (like Medipix3)

Frame readout

- 55 μ m pixels
- 40 kHz frame rate CRW (8 bit depth)
- ~ 4x10⁶ counts/pixel/s

Operation Modes

- > Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration TSMC 65nm
 - Timepix4v2 received from foundry in Sept 2021

• ~ 4x10⁶ counts/pixel/s

Operation Modes

- > Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration TSMC 65nm
 - Timepix4v2 received from foundry in Sept 2021

Time-stamping and event-by-event readout (like Timepix3)

 $55 \,\mu m$ pixels

Operation Modes

- > Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration TSMC 65nm
 - Timepix4v2 received from foundry in Sept 2021

Timepix4 readout chip

Generation comparison

			Timepix3 (2013)	Timepix4 (2019/20)	
Technology			IBM 130 nm – 8 metal	TSMC 65 nm – 10 metal	
Pixel size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable (TSV) 512 x 448	
Sensitive area			1.98 cm ²	6.94 cm ²	
Readout modes	Data driven (tracking)	Mode	ToT and TOA		
		Event packet	48-bit	64-bit	
		Max rate	< 43 Mhits/cm²/s	357.6 Mhits/cm²/s	
		Pix rate equiv.	1.3 kHz/pix average	10.8 kHz/pix average	
	Frame Based (imaging)	Mode	Count: 10 bit + iToT	Count: 8 or 16 bit CRW	
		Frame	Zero suppressed (with pix addr)	Full frame (no pix addr)	
		Max count rate	82 Ghits/cm ² /s	~ 800 Ghits/cm²/s	
		Max frame rate	N/A (worst case: 0.8ms readout)	80 kHz CRW	
TOT energy resolution			< 2 keV	< 1 keV	
Time resolution			1.56 ns	~ 200 ps	
Readout bandwidth			≤ 5.12 Gbps (8 x 640 Mbps)	≤163.8 Gbps (16 x 10.2 Gbps)	
Target minimum threshold			< 500 e ⁻	< 500 e ⁻	

Timepix4 readout chip

Generation comparison

			Timepix3 (2013)	Timepix4 (2019/20)	
Technology			IBM 130 nm – 8 metal	TSMC 65 nm – 10 metal	
Pixel size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable (TSV) 512 x 448	3.5 x
Sensitive area			1.98 cm ²	6.94 cm ²	
Readout modes	Dete	Mode	ToT and TOA		
	Data driven (tracking)	Event packet	48-bit	64-bit	
		Max rate	< 43 Mhits/cm²/s	357.6 Mhits/cm ² /s	8 x
		Pix rate equiv.	1.3 kHz/pix average	10.8 kHz/pix average	
	Frame Based (imaging)	Mode	Count: 10 bit + iToT	Count: 8 or 16 bit CRW	
		Frame	Zero suppressed (with pix addr)	Full frame (no pix addr)	
		Max count rate	82 Ghits/cm²/s	~ 800 Ghits/cm²/s	10 x
		Max frame rate	N/A (worst case: 0.8ms readout)	80 kHz CRW	
TOT energy resolution			< 2 keV	< 1 keV	2 x
Time resolution			1.56 ns	~ 200 ps	8 x
Readout bandwidth			≤ 5.12 Gbps (8 x 640 Mbps)	≤163.8 G bps (16 x 10.2 Gbps)	32 x
Target minimum threshold			< 500 e ⁻	< 500 e ⁻	

TEMPUS – applications: molecular imaging

Ion detection

Acknowledgment to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper @ CMI-DESY

TEMPUS – applications: molecular imaging

Ion detection

Acknowledgment to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper @ CMI-DESY

TEMPUS – applications: molecular imaging

Ion detection

DESY.

~2 ns (std dev) time resolution

Acknowledgment to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper @ CMI-DESY

TEMPUS – applications: XPCS @ PETRAIII-P10

X-ray Photon Correlation Spectroscopy

> Fluctuation of speckle pattern over time reveals dynamics of sample

- At PETRA-IV, XPCS could reach 100 ns time resolution!
- > Typical experiment has $\sim 2 \times 10^7$ hits/s in detector

Acknowledgment to Fabian Westermeier, Ruth Livingstone and Michael Sprung @ PETRAIII - P10

Key features

- > Single-chip Timepix4 board connected to off-theshelf Xilinx board:
 - Zynq Ultrascale+ with FPGA fabric and 4-core CPU
- > Parallel readout of 16 high-speed links from chip, each up to 5 (or 10) Gbit/s
 - Specialised transceivers on Zynq
- > Daughter-board offering 2 x 100 GbE links over "Firefly" optical cable
 - Challenge of dealing with ~ 160Gbits/s

Development status

- > Data read out over the control link
 - First image using a ⁵⁵Fe source and a DESY-logo target
 - Limited to ~ 5000 hits/second
- > High speed data links being debugged
- > Basic software for taking data
 - Detector-PC communication protocol: gRPC
 - Implementation of Pymepix library (used in Timepix3) is ready for data processing
- > External triggering is operational
 - Different triggering schemes are being implemented
- > Digital pixel (provides time reference) operational

TEMPUS – data reception and processing in PC

Hardware and software approaches

- > Xilinx FPGA accelerator cards:
 - Data reception with 2 x 100 Gigabit Ethernet
 - Buffering in high-bandwidth memory
 - Data correction in FPGA fabric
 - Programming in C++ (Xilinx High Level Synthesis)
 - PCIe4.0 transfer to server PC
- > Data reduction algorithms through machine learning:

Rahmani, V. et al. "Data reduction for X-ray serial crystallography using machine learning" J. Appl. Crystallogr. 2023 (56) 1

https://doi.org/10.1107/S1600576722011748

TEMPUS – outlook and perspectives

A multi-chip system

- > Goal: large, continuous detector area
- > Tileable building block: 3-chip module
- > Readout board with Zynq Ultrascale+ SoC

3-chip detector head 1344 x 512 pixels

TEMPUS – outlook and perspectives

TSV technology

- > Improved 4-side butting with Through Silicon Vias (TSVs)
 - Full chip surface is covered with pixels
 - Rerouting in metal layers creates space for periphery
 - Improved TSV landing pads, redundant inputs, extra power TSV connections in center of chip

Conclusions

- Current LAMBDA systems ~ 2 kHz frame rates and large areas
- Current Timepix3 systems ~ 5ns time resolution with limited hit rate

Conclusions

- Current LAMBDA systems ~ 2 kHz frame rates and large areas
- Current Timepix3 systems ~ 5ns time resolution with limited hit rate

> We are developing TEMPUS using Timepix4

- Improved photon counting and time stamping modes:
 - Higher frame rate ~ 40kHz
 - Hit rate compatible with more PETRA experiments
 - Much higher time resolution possible

Conclusions

- Current LAMBDA systems ~ 2 kHz frame rates and large areas
- Current Timepix3 systems ~ 5ns time resolution with limited hit rate
- > We are developing TEMPUS using Timepix4
 - Improved photon counting and time stamping modes:
 - Higher frame rate ~ 40kHz
 - Hit rate compatible with more PETRA experiments
 - Much higher time resolution possible

Acknowledgments

> DESY / FS-DS – Photon Science Detector Group

> DESY / CFEL-CMI – Controlled Molecule Imaging

> The Medipix4 collaboration

> University of Jena

> X-Spectrum GmbH

