The drift chamber project for the Super Charm-Tau Factory detector

The drift chamber group of BINP

D.A. Kyshtymov

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

- The drift chamber
- Simulation in ANSYS
- Optimization of cell structure
- Momentum and dE/dx resolutions
- The small prototype of DC
- Summary

- 1. Vacuum pipe
- 2. Inner tracker
- 3. Drift chamber
- 4. PID
- 5. Calorimeter
- 6. SC magnet
- 7. Muon system

The main tool for researching the subatomic world is accelerators of charged particles

Currently, the project of Super C-Tau Factory is being developed at the $\ensuremath{\mathsf{BINP}}$:

Provides opportunities:

- to study the c-quarks and τ-leptons birth processes;
- to search for exotic particles.

It will:

- $\bullet\,$ work at energy range from 2 to 6 GeV ;
- have luminosity about $10^{35} \frac{1}{cm^2 \times s}$.

The drift chamber

- Shape hexagonal
- 41 layer are divided into 10 superlayers
- Average radius \sim 7 mm
- Gas mixture $He/C_3H_8-60/40$
- Gas gain $\sim (5-7) \cdot 10^4$
- Voltage \sim 2 kV
- Drift time \sim 350 400 ns
- $\sigma \sim$ 100 μm

• $\frac{\sigma_{dE/dx}}{dE/dx} \sim 7 \%$

Characteristics of similar drift chambers

Characte-	Detector						
ristics	CLEOIII	BaBar	BESIII	Bellell	SCTF		
B,T	1.5	1.5	1.0	1.5	1.5		
N _{cells}	9796	7104	6796	14336	10903		
Shape	Square	Hex.	Square	Square	Hex.		
Anode wire d, mkm	W 20	W 20	W 25	W 30	W-Re(3 %) 25		
Field wire d, mkm	AI 110	AI 120	Al 110	Al 126	AI 100, 125		
Size mm × mm	14×14	18×12	$\begin{array}{c} 12 \times 12 \\ 16 \times 16 \end{array}$	7×7 10×10	$\sim 14 \times 14$		
Gas	He/C_3H_8	He/iC_4H_{10}	He/C_3H_8	He/C_2H_6	He/C_3H_8		
mixture	60/40	80/20	60/40	50/50	60/40		
V _{anode} , B	1900	1930	2200	2300	~ 2000		
T/D, ns/mm	$\sim 300/7$	$\sim 500/9$	$\sim 350/8$	$\sim 350/8$	$\sim 350/7$		
σ_p/p , %	0.32	0.48	0.5	-	~ 0.35		
$\sigma_{dE/dx}$, %	5.7	7.5	6.0	~ 6	~ 6.9		
$\sigma, \mu m$	110	120	120	~ 100	~ 100		

The article has been published: https://doi.org/10.1016/j.nima.2021.165490

The inner/outer tube

- To facilitate the wiring the outer tube is provided with 24 windows
- The DC has a cylindrical shape (CFRP material)
- The wall thickness is 0.9 mm/4.5 mm ($X/X_0 = 0.46\%/2.1\%$)
- The load of wire tension 2.36 t/3.54 t (maximum deformation is about 20 $\mu m/80~\mu m)$
- Stability safety factor is about 7.3/14

The endplate

Endplate deformation as a function of radius

- \bullet Holes drilled in the endplate result in an increase in flexure of about 10%
- The endplate is flat
- The thickness is 13 mm (material CFRP, $X/X_0 = 5.9\%$)
- The full load is about 5.9 t (maximum deformation is about 1.6 mm)

Gas mixture	Ratio	X_0 , m	N_p , $rac{1}{cm}$	V_{dr} , $\frac{cm}{\mu s}$	$D_l,$ $\frac{\mu m}{\sqrt{cm}}$	Experiment
He/iC_4H_{10}	80/20	807	21.2	2.79	141	BaBar
He/iC_4H_{10}	90/10	1313	12.7	2.31	162	Kloe
He/C_3H_8	60/40	569	31	3.06	133	CLEOIII BESIII
He/C_2H_6	50/50	686	22.9	3.52	142	Belle BelleII
He/CH_4	80/20	3087	7	2.54	172	Kloe
Ar/C_2H_6	50/50	178	34	5.27	143	CLEOII
He/DME	70/30	678	21	1.12	123	-

Characteristics of different gas mixtures at B = 0 T, E = 1 kV/cm

Optimization of cell structure

- Due to imperfections of hexagonal shape ⇒ deviation of the electric field from cylindrical symmetry at the wire
- Solution \Rightarrow cells structure optimization

Distortion of cells from hexagonal shape

Optimization of cell structure

• The development of cell structure was carried out sequentially layer by layer. The wire positions in the cell were optimized for each layer:

$$f = \frac{\sqrt{(R - R_2)^2 + (R - R_3)^2 + (R_2 - R_3)^2}}{R + R_2 + R_3}$$

Dependence of f as a function of R for the first superlayer

Momentum and dE/dx resolutions

The toy simulation of pions flight through DC was performed;

dE/dx resolution $\sigma_{dE/dx} \sim 7\%$ was estimated from CLEO dE/dx resolution and comparable with Belle(6.9%) and BaBar(7.5%)

The small prototype of DC

- Diameter 70 mm
- Length 300 mm
- 7 hexagonal cells
- The spatial resolution measurements have been performed at the $He/C_3H_8 60/40$ and $He/C_2H6 50/50$ gas mixtures at different gas gains

Prototype photo

Layout of cells in the prototype

Program of charged particles track reconstruction for the small DC prototype

Track is parameterized: $xsin(\phi) + ycos(\phi) - a = 0$

All possible tangent tracks to isochrones are sorted out and the most suitable one is selected.

Next comes the numerical search: $\chi^2(a,\phi) = \sum \frac{(R_i(a,\phi) - r_i)^2}{2\sigma_i^2},$ где $R_i(a,\phi) = |x_i sin(\phi) + y_i cos(\phi) - a|$

Tangents between circles

Simulation of the calibration procedure

Spatial resolution without taking into account the diffusion of electrons and the constant component

15 / 18

T, [ns]

Full spatial resolution for He/C3H8 mixture

Contribution of each component to resolution

$$\sigma(r) = \sqrt{\sigma_{cl}^2 + \sigma_{dif}^2 + \sigma_{edge}^2 + \sigma_0^2}$$

 σ_{cl} - cluster effect, σ_{dif} - diffusion component, σ_{edge} - edge effects, σ_0 - constant (contributions from electronics, wire arrangements, pressure, temperature)

The spatial resolution comparison for He/C_3H_8 and He/C_2H_6 at $7\cdot 10^4$

The average spatial resolution for He/C_3H_8 and He/C_2H_6 at the different gas gains

For He/C_3H_8 : $\bar{\sigma} = 109 \pm 12 \ \mu\text{m} \text{ at } 2 \cdot 10^4$ $\bar{\sigma} = 100 \pm 8 \ \mu\text{m} \text{ at } 3 \cdot 10^4$ $\bar{\sigma} = 95 \pm 9 \ \mu\text{m} \text{ at } 5 \cdot 10^4$ $\bar{\sigma} = 89 \pm 8 \ \mu\text{m} \text{ at } 7 \cdot 10^4$ $\bar{\sigma} = 87 \pm 7 \ \mu\text{m} \text{ at } 10^5$

For He/C_2H_6 : $\bar{\sigma} = 99 \pm 6 \ \mu\text{m} \text{ at } 5 \cdot 10^4$ $\bar{\sigma} = 95 \pm 8 \ \mu\text{m} \text{ at } 7 \cdot 10^4$ $\bar{\sigma} = 90 \pm 7 \ \mu\text{m} \text{ at } 10^5$

- A simple detector design with competitive characteristics is proposed
- The preliminary calculation of the DC construction has been completed in ANSYS
- $\bullet\,$ Momentum resolution and dE/dX resolution have been simulated
- Measured the spatial resolution on the small DC prototype for He/C_3H_8 and He/C_2H_6 gas mixtures at different gas gains
- Our results show the possibility of achieving good accuracy measurements in a small hexagonal cell in a He/C_3H_8 gas mixture

In the near future we plan to upgrade a prototype (increase amount of cells from 7 to 19) $\,$

THANK YOU FOR YOUR ATTENTION!

BACKUP

The drift chamber

r

SUPER LAYER NUMBER	NUMBER OF MONO- LAYERS	NUMBER OF CELLS IN MONOLAYER	NUMBER OF CELLS	STEREO ANGLE, mrad	CELL SIZE r ± Ar, mm		RADIUS OF ANODE WIRE LAYER, mm			
					6,306	0.034	217.306			
1 4		125	500	0	6.644	0.007	227.100			
	4				7.165	0.039	246.906			
					7,549	0.009	258,035			
				628 + 33.8	6.473	0.028	280.154			
2	4	157	628		6.747	0.006	290.136			
-	-1				7.182	0.031	310.863			
				- 34.2	7.486	0.007	321.938			
					6.564	0.024	341.986			
2	4	190	756	0	6.794	0.005	352.060			
5	-1	189	100	0	7.140	0.026	371.992			
					7.388	0.005	382.950			
				+ 19 0	6.603	0.020	405.941			
4	4	002	002	+ 48.9	6.799	0.004	416.040			
4	4	223	892	10.0	7.104	0.021	436.741			
				- 49.3	7.314	0.005	447.606			
					6.651	0.018	467.570			
					6.823	0.003	477.718			
5	5	255	1275	0	6.968	0.001	488.097	NU		
					7.120	0.001	498.701			
					7.274	0.001	509.535			
			1148		6.741	0.016	533.350			
<i>c</i>	4	287			6.895	0.004	543.615	T		
0				7 03.1	7.026	0.001	554.088	L		
					7.161	0.001	564.762			
			1252	- 63.4	6.778	0.015	584.801			
7	4	313			6.919	0.003	595.108			
					7.039	0.001	605.606			
								7.163	0.001	616.289
	4	4 341	1364	0	6.768	0.014	636.220			
8					6.898	0.003	646.501			
	-1				7.007	0.001	656.957	- 1		
					7.121	0.001	667.581	- 1		
				+ 64 7	6.746	0.013	689.948	6		
0	4	4 371	1484	1 04.7	6.865	0.003	700.185	1		
9				- 65.0	7.041	0.013	720.090	- 1		
					7.165	0.002	730.775			
		4 401	1604	0	6.791	0.012	750.730			
10	4				6.902	0.003	761.027			
10					6.995	0.001	771.472			
					7.091	0.001	782.061			
TOTAL	41		10903							

Full spatial resolution for He/C3H8 mixture

Contribution of each component to resolution

$$\sigma(r) = \sqrt{(\frac{p_0}{r+p_1})^{p_2} + (p_3\sqrt{r})^2 + (p_4e^{p_5r})^2 + p_6^2}$$

$$p_0 - p_5 \text{ are free parameters}$$

Parameter p_6 is a σ_0 associated with contributions from electronics, wire arrangements, pressure, temperature. It was found from quadratic difference between the experimental and simulated data

Gas gain in spatial resolution measurement (He/C_3H_8)

Gas gain in spatial resolution measurement (He/C_2H_6)

18/18

SCTF		BELLE II		BaBar		BES III	
R mm	$lpha_{\sf stereo}$ mrad	R mm	$lpha_{\sf stereo}$ mrad	R m	$lpha_{\sf stereo}$ mrad	R mm	$lpha_{\sf stereo}$ mrad
280.154	+33.8	257.0	+45.4	_	_]	327.5	-30.68
290.136	-34.2	348.0	+45.8	318.5	+44.9	334.1	-31.31
405.941	+48.9	-	-	370.5	-52.3	402.1	+31.41
416.040	-49.3	476.9	-55.3	480.8	+55.6	415.5	+32.46
533.350	+63.1	566.9	-64.3	533.2	-62.8	531.7	-42.06
584.801	-63.4	-	-	-	-	583.0	+40.37
689.948	+64.7	695.3	+63.1	643.0	+65.0	676.3	-41.62
730.775	-65.0	785.3	+70.0	695.2	-72.1	-	-