TECHNOLOGY IN INSTRUMENTATION & PARTICLE PHYSICS CONFERENCE

Cape Town, South Africa, 4-8 September 2023

ALICE ITS3

how to integrate a large dimension MAPS sensor in a bent configuration detector

 φ^{1} (rad)

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness $\leq 50~\mu m$
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness $\leq 50~\mu m$
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness \leq 50 μ m
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness \leq 50 μ m
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness \leq 50 μ m
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness \leq 50 μ m
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness $\leq 50~\mu m$
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

Key ingredients

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness \leq 50 μ m
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

Beam pipe inner/outer radius (mm)	16.0/16.5				
IB Layer Parameters	Layer 0	Layer 1	Layer 2		
Radial position (mm)	18.0	24.0	30.0		
Length of sensitive area (mm)	280.0				
Pseudo-rapidity coverage	±2.5	±2.3	±2.0		
Active-area (cm ²)	610	816	1016		
Pixel sensor dimension (mm ²)	280 × 56.5	280 x 75.5	280 x 94		
Number of sensors per layer	2				
Pixel size (µm²)	O (10 x 10)				

Key ingredients

- »Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness \leq 50 μ m
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures

» Air cooling

The ALICE Inner Tracking System Upgrade (V. Sarritzu) - Wed. 11:20 - D1 session

Key ingredients

»Wafer-scale chips (up to ~28x10 cm), fabricated using stitching

- »Si MAPS sensor based on 65 nm technology
- » Sensor thickness $\leq 50 \ \mu m$
- » Chips bent in cylindrical shape at target radi
- » Ultra light carbon foam structures

» Air cooling

The ALICE Inner Tracking System Upgrade (V. Sarritzu) - Wed. 11:20 - D1 session

ALICE Inner Tracking System Upgrade: characterization of first chips fabricated in 65 nm CMOS technology (A. Trifirò) - Wed. 17:00 - E1 session

Key ingredients

- » Wafer-scale chips (up to ~28x10 cm), fabricated using stitching
- » Si MAPS sensor based on 65 nm technology
- » Sensor thickness ≤ 50 µm
- » Chips bent in cylindrical shape at target radii
- » Ultra light carbon foam structures
- » Air cooling

This talk content:

- Silicon bending
- Carbon foam properties
- Sensor cooling
- Mechanical characterization
- ➡ Interconnection

- »Three points bending force measurements:
 - MAPS ~50 µm thick are quite flexible
 - Large benefit from going thinner
 - Project goal thicknesses and desired bending radii achievable

- »Laboratory and test beam measurements (Jun 2020) allow to conclude that chip (180 nm CMOS) performance doesn't change after bending
 - Pixel matrix threshold distribution does not change when sensor is bent
 - Efficiency above 99.9% at a threshold of 100 e⁻

- » Laboratory and test beam measurements (Jun 2020) allow to conclude that chip (180 nm CMOS) performance doesn't change after bending
 - Pixel matrix threshold distribution does not change when sensor is bent
 - Efficiency above 99.9% at a threshold of 100 e⁻

- » Comparison between flat and bent MLR1 (65 nm CMOS) sensors ongoing
 - Bending procedure developed and proximity board adapted to bent configuration
 - Few samples prepared and under measurements in laboratory with ⁵⁵Fe source

TIPP23 | 4-8 September 2023 | Domenico Colella 13

ITS3 R&D - Carbon foam properties

» Silicon sensor kept in position by:

» Carbon foams characterised for machinability and thermal properties

ITS3 R&D - Carbon foam properties

» Carbon fleece veil (120 µm thick) between silicon and carbon foam used to:

- Control the glue thickness
- Reduce thermal contact resistance
- Reduce carbon foam footprints on the silicon

X-ray scan of Engineering Model 2 (EM2)

» Cylindricity granted within 0.05 mm using the half-ring

ITS3 R&D - Sensor cooling

- » Thermal characterization setup
 - dummy silicon equipped with copper serpentine simulating heat dissipation in matrix (25 mW/cm²) and end-cap (1000 mW/cm²) regions
 - 8 PT100 temperature sensors distributed over the surface of each half-layer
 - airflow from C-side to A-side

Valves

Manifold

Fan

Temperature sensor

Mass flow meters

A-side

ITS3 R&D - Sensor cooling

- » Thermal characterization setup
 - dummy silicon equipped with copper serpentine simulating heat dissipation in matrix (25 mW/cm²) and end-cap (1000 mW/cm²) regions
- 8 PT100 temperature sensors distributed over the surface of each half-layer
- airflow from C-side to A-side

» Conclusion

- with an average airflow free-stream velocity between the layers of about 8 m/s, the detector can be operated at a temperature of 5 degrees above the inlet air temperature
- temperature uniformity along the sensor can be also kept within 5 degrees

ITS3 R&D - Mechanical characterization

» Short-term position stability of the sensor over time affected by

- thermoelastic expansion caused by short-term temperature fluctuation
- airflow

ITS3 R&D - Mechanical characterization

» Short-term position stability of the sensor over time affected by

- thermoelastic expansion caused by short-term temperature fluctuation
- airflow

- » Thermoelastic expansion setup
 - differential thermoplastic expansion among different components could introduce failures
 - final grade material half-layer ulletassembly in climate chamber (up to 36°C by steps of 2 °C)

Materials

C-side H-ring: carbon foam, ERG (RVC) Duocel® Longerons: carbon foam, ERG (RVC) Duocel® Half-layer 2: Blank silicon 40 µm CYSS: carbon sandwich A-side H-ring: carbon foam, Allcomp k9 SD

» Conclusion

- several thermal cycles for a total of $9h \rightarrow assembly unaffected$
- further tests will be performed to investigate: rapid increase of the • temperature and maximum failure temperature

ITS3 R&D - Mechanical characterization

» Short-term position stability of the sensor over time affected by

- thermoelastic expansion caused by short-term temperature fluctuation
- <u>airflow</u>

» Vibration characterization setup

- measurement of the out-of-plane vibrations of the half-layers
- confocal chromatic displacement sensors → avoids perturbation to the airflow
- » Conclusion
 - RMS_{airflow} < 0.4 µm for L2 (largest sensor), smaller for L0 and L1

connected in a merging area interconnected via wire-bonding at the edge of the sensor verified

- wire-bonds loops optimisation based on pull-force measurements

three double copper layers flex, multi-strip shaped (15-30 cm long),

» Flexible printed circuits for communication and powering

- present setup (not final grade material): 6.6±0.3 g at ~900 µm pad-to-pad distance

placed outside the sensible area

•

•

SUMMARY

» ALICE proposes to build the next-generation inner tracking detector, based on 300 mm wafer-scale, ≤ 50 µm thin, bent MAPS

» R&D is making rapid progress on all fronts

- silicon bending at ITS3 bending radii → qualified
- bending effects on sensor performances → absent in 180 nm CMOS and under study in 65 nm CMOS
- air-cooling heat dissipation → *qualified* for 25 and 1000 mW/cm² (respectively in matrix and end-cap) with 8 m/s free-stream velocity
- mechanical stability → proven (0.4 µm vibration, thermoelastic expansion up to 36 °C)
- wire bonding interconnection scheme → proven
- » Final detector integration procedure under finalisation

Backup

Backup - Interconnection

Line	BOT-L1	BOT-L2	MID-L1	MID-L2	TOP-L1
Loop height (μm)	110	220	310	360	500
Pad-pad distance (μm)	880	1520	2420	3140	3740
Wire angle on FPC (°)	13	15	17	8	4
Wire angle on sensor $(^{\circ})$	12	16	14	13	15
Pull force (g) [mean \pm dispersion]	$6.6{\pm}0.3$	$6.6{\pm}0.3$	$5.1{\pm}0.4$	$5.2{\pm}0.3$	$3.8{\pm}0.3$
Pull force (g) [min - max]	5.8 - 7.0	6.2 - 7.1	4.3 - 5.7	4.7 - 5.6	3.2-4.2
Force on wire FPC side (g)	15.3	12.3	13.8	14.1	11.3
Force on wire sensor side (g)	15.2	12.4	14.1	14.4	11.6

Backup - Super-ALPIDE project

- » Super-ALPIDE
 - 18 not diced ALPIDE chips
 - · dimensions close to the ones for L0 sensor
- » Goals
 - verify bending tools for large-size working chips
 - verify mechanical support alignment tools
 - develop wire-bonding over bent surface tools
 - develop first bent flex prototype (for powering and data streaming)
 - assemble first working large dimension bent sensor \rightarrow by October 2023

Backup - Carbon foam properties

» Carbon foam material budget study though particle deviation angle measurement

ALPIDE