

Integration Tests with 2S Module Prototypes for the Phase-2 Upgrade of the CMS Outer Tracker

Technology & Instrumentation in Particle Physics (TIPP2023)

Lea Stockmeier on behalf of the Tracker Group of the CMS Collaboration | September 06, 2023

www.kit.edu

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

2/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

The Phase-2 Upgrade of the CMS Outer Tracker

The Phase-2 Upgrade of the CMS Outer Tracker Thermal TB2S Integration Test 3/21

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Institute of Experimental Particle Physics

06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

HL-LHC and CMS Phase-2 Outer Tracker Upgrade

- Accelerator upgrade to reach luminosities up to 7.5 × 10³⁴ cm⁻²s⁻¹
- New tracker for the CMS experiment
 - Improved radiation tolerance
 - Increased granularity
 - Reduced material budget
- Outer Tracker (OT) consists of 13 200 p_T-modules
 - 2S: strip/strip sensor
 - PS: pixel/strip sensor
 - Contribution to L1 trigger
 - Two-phase CO₂ cooling to reach a sensor temperature of ≈ -20 °C

The Phase-2 Upgrade of the CMS Outer Tracker

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

2S Module for the CMS Outer Tracker

¹ Aluminum / carbon fiber composite

² Prydderch et al., CBC3: a CMS microstrip readout ASIC with logic for track-trigger modules at HL-LHC, CMS-CR-2017-383

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Module Thermal Performance Simulation

- Finite Volume Model (FVM) simulations
 - Simulate cooling performance after irradiation
 - Adiabatic model
 - For some module positions, thermal runaway sets in at CO₂ temperatures below -35 °C
- \Rightarrow 2nd stump bridge inserted to improve module cooling at these critical positions

5 cooling points

6 cooling points

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

6/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

Tracker Barrel with 2S Modules (TB2S) Design

- 372 ladders with 12 modules each ⇒ 4464 2S modules in total
- Two-phase CO₂ cooling to reach a sensor temperature of -20 °C
- Layer 2 and 3:
 - Module at position 1 with 6th cooling point at long cooling insert
- Layer 1:
 - Innermost layer
 - All modules with 6th cooling point

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Tracker Barrel with 2S Modules (TB2S) Design

- 372 ladders with 12 modules each ⇒ 4464 2S modules in total
- Two-phase CO₂ cooling to reach a sensor temperature of -20°C
- Layer 2 and 3:
 - Module at position 1 with 6th cooling point at long cooling insert
- Layer 1:
 - Innermost layer
 - All modules with 6th cooling point

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Tracker Endcap Double-Discs (TEDD) Design

- Each double-disc formed by two discs of two "dees" provides one hermetic detector plane
- 1 TEDD unit formed by 5 double-discs
- Seven cooling circuits per dee
 - Cooling inserts for 2S modules
 - Carbon foam blocks for PS modules

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Integration Tests

Mounting modules on final detector structures and performing functional tests

- Test module integration itself
 - Module handling
 - Tooling

9/21

06.09.2023

- Test optical and electrical services
- Test power supplies
- Test cooling performance
 - Validate Finite Volume Method (FVM) simulations

Lea Stockmeier: Integration Tests with 2S Module Prototypes

- Check for possible crosstalk between modules
- \Rightarrow This talk covers an overview of TB2S and TEDD integration tests

The Phase-2 Upgrade of the CMS Outer Tracker Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Thermal TB2S Integration Test

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Thermal TB2S Integration Test – Overview

- March 2022 in cold room at CERN
- 3 modules mounted on a TB2S ladder prototype cooled using two-phase CO₂ cooling system
 - One module with irradiated sensors (equipped with 16 temperature sensors)
- Cooling of air around modules unavoidable \Rightarrow effect has to be estimated with thermal simulation

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

11/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

Module Temperatures During Calibration

- Measurements
 - Minute 1 to 6: IV curve (0 V to 800 V)
 - Minute 7: Set HV to 600 V, switch on LV
 - Minute 14 to 23: Calibration of module
- Long cooling insert and missing 6th cooling point
 - Higher temperature at left bridge
 - All temperatures on left side higher than on right
- Spread of sensor temperatures within 1 °C

Irrad. Module During Calibration

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

- Current limit of 5 mA reached during measurements
 ⇒ Thermal runaway not observed during measurements
- Difference between measurements and simulations with reasonable choice of heat transfer coefficient for air convection < ±1 °C

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

- Current limit of 5 mA reached during measurements
 ⇒ Thermal runaway not observed during measurements
- Difference between measurements and simulations with reasonable choice of heat transfer coefficient for air convection < ±1 °C

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

- Current limit of 5 mA reached during measurements
 ⇒ Thermal runaway not observed during measurements
- Difference between measurements and simulations with reasonable choice of heat transfer coefficient for air convection < ±1 °C

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

13/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

Full TB2S Ladder Integration Test

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Full TB2S Ladder Integration Test – Overview

- January 2023 at IPHC in Strasbourg
- 12 2S modules from 5 assembly sites
- Prototypes of electrical and optical services
- Two powering possibilities
 - Lab power supply
 - Prototype power supply for the Phase-2 tracker with 60 m long cable

Tests Performed

- I(V) curves
- Noise measurements
- High-statistics measurements
 - High rate trigger studies
 - Common mode noise studies

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Module Handling and Integration Tooling

- Test of module handling and integration tooling during ladder integration
- Tooling worked fine
- Ideas for minor changes came up

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

16/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

Module 1: Only top sensor noise shown Reduced noise on ladder due to a lost soldering connection

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

17/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

Module 1: Only top sensor noise shown Reduced noise on ladder due to a lost soldering connection

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

17/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

Module 1: Only top sensor noise shown Reduced noise on ladder due to a lost soldering connection

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Institute of Experimental Particle Physics

17/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

- Module noise extracted from S-curves of binary readout
- Module noise shows no significant increase on the ladder compared to the measurement before integration
- Noise level independent of power supply powering the modules
- No noise degradation throughout integration test

Module 1: Only top sensor noise shown Reduced noise on ladder due to a lost soldering connection

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

17/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

TEDD Dee Integration Test

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

TEDD Dee Integration Test – Overview

- June 2023 at DESY in Hamburg
- 13 2S and PS modules from 4 assembly sites
- First integration test with 2S and PS modules
- First time mounting 2S modules on a dee prototype

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

19/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

TEDD Dee Integration Test – Overview

- June 2023 at DESY in Hamburg
- 13 2S and PS modules from 4 assembly sites
- First integration test with 2S and PS modules
- First time mounting 2S modules on a dee prototype

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

19/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

Noise Comparison Test Bench - Dee

- PS module noise different in some cases due to prototype-specific known issues
- 2S module noise shows no significant increase on the dee compared to the measurement before integration
 - Module 1: Differences before and after integration due to different grounding during measurements

Module 1 to 7: 2S modules Module 8 to 13: PS modules

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

Noise Comparison Test Bench - Dee

- PS module noise different in some cases due to prototype-specific known issues
- 2S module noise shows no significant increase on the dee compared to the measurement before integration
 - Module 1: Differences before and after integration due to different grounding during measurements

Module 1 to 7: 2S modules Module 8 to 13: PS modules

The Phase-2 Upgrade of the CMS Outer Tracker The

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

Summary and Outlook

Summary

- CMS Outer Tracker upgrade moving from R&D to production phase
- Integration tests with 2S and PS module prototypes on a TB2S ladder and TEDD dee
 - First exercises of mounting CMS Phase-2 Outer Tracker modules on larger structures
 - No increase of noise and no crosstalk between modules observed
 - Thermal simulation results fit measurements for a reasonable choice of heat transfer coefficient for air convection

Outlook

- Further integration tests planned
 - With final modules
 - With final support structures

The Phase-2 Upgrade of the CMS Outer Tracker

Thermal TB2S Integration Test

Full TB2S Ladder Integration Test

TEDD Dee Integration Test

Backup

22/21 06.09.2023 Lea Stockmeier: Integration Tests with 2S Module Prototypes

Irradiated Module

- Study module performance at the end of HL-LHC
 - At 4000 fb⁻¹: maximal fluence of $\Phi_{eq} = 3.7 \times 10^{14} \text{ cm}^{-2}$ for modules mounted on a ladder
- Module components irradiated (before module assembly) with 23 MeV protons at KIT
 - Top sensor: $\Phi_{eq} = 5.2 \times 10^{14} \text{ cm}^{-2}$
 - Bottom sensor: $\Phi_{eq} = 3.8 \times 10^{14} \text{ cm}^{-2}$
 - Total sensor annealing: 154 d at room temperature
 - Front-end hybrids: $\Phi_{eq} = 1 \times 10^{14} \text{ cm}^{-2}$ (dose of 150 kGy)

Module Arrangement

- Position 1 (left): Irradiated module
 - No additional 6th cooling point (foreseen at position 1)
 - No extra mass in spacers ("old" design)
- Position 2 and 3: Non-irradiated modules
- Heating resistors at ladder inserts of the other positions:
 - Powered to have a total power consumption of ≈ 70 W across full ladder

- Changing CO₂ set temperature by adjusting pressure
- All modules: HV = 600 V
- Heating resistors with summed power of 70 W
- Two different environmental conditions during measurements

Colder Room Condition

- Changing CO₂ set temperature by adjusting pressure
- All modules: HV = 600 V
- Heating resistors with summed power of 70 W
- Two different environmental conditions during measurements

⇒ Compare with thermal Finite Volume Model (FVM) simulations (Take convection into account)

Thermal FVM Simulation

Detailed presentation of simulation in Turrioni's talk Cristiano

Results: Colder Room Condition

- Lower air temperature and different LV power dissipation with respect to the case on slide 13
- Thermal runaway not seen in the range $-45^{\circ}C < T_{CO2} < -18^{\circ}C$

