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Introduction to JUNO

Liquid Scintillator
20kton

Central Detector

~17,612 20” PMTs
+ ~25,600 3” PMTs
+ ~78% coverage
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•Jiangmen Underground Neutrino 
Observatory (JUNO):  

• Determine the neutrino mass ordering 
（NMO）with reactor neutrinos.


• Measure neutrino oscillation 
parameters to sub-percent level


• Supernova, solar, geo., atm. ν, etc.

• Currently under construction. Physics run 

to start in 2024.

The largest liquid scintillator  
detector ever built. 
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• Cosmic muons produce backgrounds to reactor neutrino IBD events. 

• Precise track and shower vertex reconstruction is needed to reduce these backgrounds.


• Atmospheric neutrinos provide independent sensitivity to NMO via matter effects 
(directionality and flavor identification are mandatory).


• Other physics topics like indirect dark matter search. 


Reactor neutrinos:  
Sensitivity to NMO via  
oscillation in vacuum  
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The Mixing Matrix

The neutrino mixing (PMNS) matrix can be factorized into 3
experimental regimes:
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• Cosmic muons produce backgrounds to reactor neutrino IBD events. 

• Precise track and shower vertex reconstruction is needed to reduce these backgrounds.


• Atmospheric neutrinos provide independent sensitivity to NMO via matter effects 
(directionality and flavor identification are mandatory).


• Other physics topics like indirect dark matter search. 
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Sensitivity to NMO via 

matter effects 
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Figure 7-2: Six relevant oscillograms of oscillation probabilities for atmospheric neutrinos and
antineutrinos in the normal hierarchy hypothesis.
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A Liquid Scintillator Detector for GeV Events?

Daya Bay Kamland Borexino

• LS detectors are traditionally good for low-energy topics: 
reactor/solar neutrinos etc.

• Low threshold, high energy-resolution. 


• But

• No direct tracking information.

• Scintillation light is isotropic, Cherenkov light is only a few 

percent: no direct directional information.

Typical LS detectors are designed with low-threshold, good energy resolution, ideal for low-energy physics.
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Solution: Event Topology in PMT Waveforms

4

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

P0

Scintillation light from a point source is isotropic
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Solution: Event Topology in PMT Waveforms

ΔlP0 P1

• PMTs at different angles wrt the track see distinct shapes of nPE(t)

• Exactly how nPE(t) looks depends on: 

• Track direction;

• Track starting and stopping points;

• Track dE/dx…

• Event topology information in the PMT waveform.

Directionality

PID…
Energy

μ

Scintillation light photon distribution from a charged particle  
track in space and time is not isotropic
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Slope  
(1GeV Muon)
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Solution: Event Topology in PMT Waveforms

5

Slope

Slope  
(1GeV Muon)

Slope  
(1GeV electron)

• e-like vs μ-like vs NC identification based upon PMT features.

ΔlP0 P1 μ



A Multipurpose Machine Learning Solution

6

PMT Waveforms 
(After deconvolution 
and noise-removing)



A Multipurpose Machine Learning Solution

FHT

Slope

Pictures of PMT 
Features

FHT

Slope

PMT Waveforms 
(After deconvolution 
and noise-removing)

6

And more features… …



A Multipurpose Machine Learning Solution

FHT

Slope

Pictures of PMT 
Features

FHT

Slope

PMT Waveforms 
(After deconvolution 
and noise-removing)

6

Machine Learning Models 
(Planer: EfficientNetV2; 
Spherical: Deepsphere;


3D: PiontNet++)

And more features… …



A Multipurpose Machine Learning Solution

Machine Learning Models 
(Planer: EfficientNetV2; 
Spherical: Deepsphere;


3D: PiontNet++)

Pictures of PMT 
Features

• Models are trained with large number of PMT feature pictures and learn to find direction/energy/
flavor/vertex etc. from the feature patterns.


Direction

Energy

Flavor

Track

Vertex

FHT

Slope

And more features… …

Outputs
PMT Waveforms 

(After deconvolution 
and noise-removing)
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Charged Lepton Direction Reconstruction

• Performances on simulated single charged 
leptons evaluated by the angle between true 
and reconstructed directions.  


• ~1.5  angular resolution for electrons/muons at 
1 GeV. 


∘
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68% quantile

Work in Progress

Muons

An
gu

la
r R

es
ol

ut
io

n 
()∘

True direction

Reconstructed  
direction

α

68% quantile

Work in Progress

Electrons

An
gu

la
r R

es
ol

ut
io

n 
()∘



Cosmic Muon Track Reconstruction

True muon 
track

Reco muon 
track

α

d

• Cosmic muon tracks are reconstructed by the 
incident and exit points on the detector sphere.


• Performances evaluated by the angle between 
true and reconstructed tracks (α) and the 
distance between the track midpoints (d).  


8

Work in Progress Work in Progress



Atmospheric ν: Directionality Reconstruction

• Cross-checked with different ML models: 
EfficientNet, DeepSphere, PointNet+++. 


• About/better than 10  zenith angle resolution for 
 GeV for both  and  CC events.


∘

Eν > 3 νμ/ν̄μ νe/ν̄e

9

(a) ⌫µ/⌫̄µ-CC ✓⌫ (b) ⌫e/⌫̄e-CC ✓⌫

Figure 10. The ↵ (top) and ✓⌫ (bottom) resolutions are shown as a function of neutrino energy E⌫ for (a) ⌫µ/⌫̄µ-CC (left)
and (b) ⌫e/⌫̄e-CC (right) events in the three models. The resolution improves with increasing E⌫ . The ⌫µ/⌫̄µ-CC events in
general have better resolution than the ⌫e/⌫̄e-CC events at the same energy.

Figure 11. Comparison between two included angles: the one between the true and reconstructed direction from PointNet++
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using
the same (a) ⌫µ-CC and (b) ⌫e-CC samples.

Work in Progress Work in Progress

9
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(a) ⌫µ/⌫̄µ-CC ✓⌫ (b) ⌫e/⌫̄e-CC ✓⌫

Figure 10. The ↵ (top) and ✓⌫ (bottom) resolutions are shown as a function of neutrino energy E⌫ for (a) ⌫µ/⌫̄µ-CC (left)
and (b) ⌫e/⌫̄e-CC (right) events in the three models. The resolution improves with increasing E⌫ . The ⌫µ/⌫̄µ-CC events in
general have better resolution than the ⌫e/⌫̄e-CC events at the same energy.

Figure 11. Comparison between two included angles: the one between the true and reconstructed direction from PointNet++
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using
the same (a) ⌫µ-CC and (b) ⌫e-CC samples.

• Both lepton and hadron informations are used in the directionality reconstruction.

• Low-threshold in LS detectors allows for more information from hadrons.

• The reconstructed neutrino direction deviates less from true neutrino direction compared with 

the charged lepton direction. 

• An advantage for an LS detector with this method for atmospheric neutrino oscillation 

measurements.

Work in Progress
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Atmospheric ν: Directionality Reconstruction

ν
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Reconstructed  
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Atmospheric ν: Energy Reconstruction

Atmospheric neutrino reconstruction in JUNO
M. Colomer Molla1, M. Rifai2,3 and R. Wirth4

On behalf of the JUNO collaboration
1 Université Libre de Bruxelles (ULB), Brussels

2 Forschungszentrum Jülich GmbH, Nuclear Physics Institute IKP-2, Jülich

3 III. Physikalisches Institut B, RWTH Aachen University, Aachen

4 Institute of Experimental Physics, University of Hamburg, Hamburg
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Topological Reconstruction (directionality) Energy Reconstruction with Graph
Convolution Neural Networks (GCNN)

● JUNO will be largest ever build
liquid scintillatior (LS) detector

● Enhance JUNO sensitivity to neutrino

mass ordering (NMO) via combined

analysis with reactor anti-neutrinos.

● Provide the first flux measurement

with a large liquid scintillator detector

and in the sub-GeV energy region.

● Accessible from the first year of data

taking, with O(10) events/day.

Why Atmospheric 
Neutrinos in JUNO?

Atmospheric Neutrinos in a Nutshell

Neutrinos propagate through the Earth -> matter effects modify the oscillation pattern

Inverted orderingNormal ordering
Oscillation
probability
depends on 
energy and 
zenith angle

Summary and Outlook

Includes: full simulation with electronics effects + waveform reconstruction

Graph Convolution:
● Graph represents detector geometry

-> one node = one photomultiplier (PMT)

● Convolution based on Kipf and Welling [2]

● Reconstruction of the visible energy in energy range [100MeV, 15GeV]

● Offset removed via linear bias correction

● Resolution: dE = (Etrue - Ereco)/Etrue

Resulting energy resolution of ~ 2%

Results:
[2] Kipf and Welling, arXiv:1609.02907
[3] M. Bachlechner et al., arXiv:2208.05952

-> Promising direction reconstruction performance for GeV events

Source:

νμ,e : π and K decays

Initiated by primary cosmic 

rays hitting the atmosphere

Results:

● Energy and direction reconstruction for atmospheric neutrinos

are feasible in JUNO -> oscillation and NMO study ongoing

● Ongoing:
○ Particle identification via machine learning (GCNN).

○ Separate hadronic contribution to improve direction reconstruction
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Input data:
- First hit time per

- Charge per PMT (Graph)

- Charge VS time distribution

(summer over all PMTs)

Architecture:
1) Graph Convolution:

- Alternate with ResNet Blocks

- Apply graph partition pooling [3]

2) 1D convolution on charge over time

3) Fully Connected Layers:

- Combine 1) and 2) outputs

Case 1: hadron energy is negligible Case 2: hadron energy is non negligible

µ

Legend:
– muon track

(Monte Carlo)

[1] H. Rebber et al. 2021 JINST 16 P01016

Example: two νμ charged current events of ~3 GeV

- tref smeared by PMT transit time spread (TTS)
- ȓref smeared by vertex uncertainty of 25 cm

reference time and vertex: (t
ref

, ȓ
ref

)

Analytical probability density functions
(based on scintillation and optical properties):

Idea: Reconstruct the photon emission probability distribution based

on the detected hit charges and times [1].

Principle:
PMT
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True Visible Energy (GeV)

Neutrino energy reconstruction –υμ CC FC (Ⅰ)
• Features：nPE, FHT, Slope, nPEratio, Peak
• Result is the sum of the sub-samples 
• Energy resolution at 17% - 1% in the range of 0.5-

12GeV
• Still bias in the lowest bin
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True Neutrino Energy (GeV)

• Strategy 1: Reconstruct the visible energy 
(after quenching in the LS).

• Strategy 2: Reconstruct the neutrino energy 

• For fully-contained events only.

• Two possible strategies on energy reconstruction:

ML result with PMT features 
and summed nPE(t) information ML result with PMT features

• Detailed study is on-going on their impact on oscillation analysis.
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Marta Colomer Molla, Mariam Rifai,  
Rosemarie Wirth @ ICRC2023



Atmospheric ν: Vertex Reconstruction

12

• Information of interaction vertex is useful for external 
background rejection and as input to other 
reconstruction algorithms.


• Performances evaluated by the distance between true 
and reconstructed vertices:


• Resolution: ~22 cm for -CC and ~33 cm for -CC
νμ νe

Charged lepton

Hadrons

ν

Interaction  
vertex

Mean: 19.3 cm 
RMS: 12.3 cm

68% quantile: 22.1 cm

Mean: 29.1 cm 
RMS: 16.1 cm

68% quantile: 33.1 cm

Work in Progress Work in Progress

Distance between true and reconstructed vertices (cm)
Distance between true and reconstructed vertices (cm)



Neutrino vs Anti-neutrino
4

Figure 4. The photoelectron signal (a), observed waveform
(b), and the deconvoluted waveform with baseline adjusted
(c) of one of the PMT. The signal was produced by one of the
atmospheric ⌫µ events in Monte Carlo simulation.

pressed as236

Oi(t) = Hi(t) ⇤ Ui(t) +Ni(t) (3)

Where Hi(t) is the true photoelectron hit at time t, Ui(t)237

is the SPE waveform, Ni(t) represents the white noise,238

and ⇤ denotes the convolution.239

The deconvoluted waveform of the ith PMT, Hdeconv
i ,240

which estimates the true photoelectron distribution, can241

be calculated using the following formula in the frequency242

domain:243

Hdeconv
i (f) = [Oi(f)Fi(f)]/Ti(f) (4)

Where Fi(f) is the filter, and Ti(f) is the SPE tem-244

plate in the frequency domain. The SPE template for245

each PMT is obtained by averaging over a large num-246

ber of SPE waveforms produced from a simulated 68Ge247

calibration sample. The filter is calculated as [(s(f) +248

n(f))2 � n(f)2]/(s(f) + n(f))2, where s(f) + n(f) and249

n(f) are the average amplitude of the SPE signal and250

the noise in the frequency domain, respectively. The251

final deconvoluted waveform Hdeconv
i (t) is obtained by252

converting Hdeconv
i (f) into the time domain with base-253

line adjusted by setting the average white noise level to254

0. Fig. 4 shows the PE signal, observed waveform, and255

deconvoluted waveform for one of the PMTs as an exam-256

ple.257

The key features of the waveform distributions are ex-258

tracted from the deconvoluted waveform in the first 1.25259

µs readout window of each PMT. These features include:260

• Total charge, which is calculated by integrating261

the charge over the entire readout time window;262

• First hit time (FHT), which is calculated by us-263

ing a constant fraction discriminator method with264

a threshold of 20% of peak charge [21];265

• Slope, which describes the average slope of the de-266

convoluted waveform in the first 4 ns after the first267

hit time:268

slopei = [Hdeconv
i (t = FHT + 4) � Hdeconv

i (t =269

FHT)]/4270

• Charge ratio, which is defined as the ratio of271

charge in the first 4 ns after FHT to the total272

charge;273

• Peak charge and peak time, which correspond to274

the charge and time of the peak of the deconvoluted275

waveform, respectively.276

In principle, additional features could be extracted to277

provide further details about the waveforms. Only the278

tested features that turn out to have a non-negligible im-279

pact on the directionality reconstruction are listed. Fea-280

ture images of all the 20-inch PMTs are used as inputs281

to the ML models.282

V. MACHINE LEARNING MODELS283

The Convolutional Neural Network (CNN) [24] tech-284

nique is very powerful in processing images, and has been285

widely used in particle physics experiments. Features ex-286

tracted from PMTs in an LS detector form image-like287

data on the PMT surface, very suitable for CNN to deal288

with. However, given the PMTs in many LS detectors289

such as JUNO are arranged on a spherical surface, the290

features extracted cannot be fed to a CNN directly since291

typical models based upon CNN can only process im-292

ages on the Euclidean domain and there is no way to293

define a sliding window (i.e. the convolution kernel) on294

the sphere.295

Three di↵erent approaches are developed to deal with296

this problem. The first approach projects spherical data297

on a planar surface so that it can easily be processed298

by various state-of-art ML models such as E�cient-299

NetV2 [25]. The second approach utilizes a model based300

upon DeepShere [26], a graph convolution neural network301

(GCNN) designed to process spherical data dedicatedly.302

Lastly, a 3D model based upon PointNet++ [27] which303
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• It is possible to statistically separate  and  with neutron-capture informations.ν ν̄
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Neutrino vs Anti-neutrino Performance

• Input features from both the prompt trigger and delayed triggers into ML.


•  and  can be statistically separated with the help from neutron-capture informations.ν ν̄
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Summary and Outlook

• Liquid scintillator detectors are traditionally limited to low-energy 
(MeV) topics.


• With machine learning techniques we have greatly expanded their 
capabilities in GeV energy region: cosmic muons, atmospheric ν and 
more.

• Performance comparable or even better than traditional large 

detectors for GeV physics (for example a water Cherenkov detector.)

• Stay tuned for more excited GeV physics from JUNO!
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Planer Model: EfficientNetV2
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Figure 12. The di↵erence in the ✓⌫ resolutions obtained from (a) ⌫µ/⌫̄µ-CC and (b) ⌫e/⌫̄e-CC samples simulated by NuWro
and GENIE using di↵erent ML models as functions of incoming neutrino energy. The ML models are trained on the same
GENIE sample and tested on either an independent GENIE sample or a NuWro sample.

shown in Fig. 12. The results are consistent in most499

energy bins for all three models with the maximum dif-500

ference around 2�, indicating that the method is robust501

and has marginal dependence on the neutrino interac-502

tion model. The only energy bin exhibiting a significant503

deviation from zero is the 1-2GeV bin of EfficientNet’s504

⌫e/⌫̄e result, likely because of some over-training due to505

smaller statistics in the ⌫e/⌫̄e sample.506

VIII. SUMMARY AND OUTLOOK507

This is the first attempt in the world to reconstruct508

atmospheric neutrinos’ directionality in a large-volume509

homogeneous LS detector. Despite of their wide appli-510

cations in various neutrino physics topics, LS detectors511

have never been used for atmospheric neutrino oscillation512

measurements before. In this study, we demonstrate for513

the first time that a LS detector can o↵er good angu-514

lar resolution for atmospheric neutrino oscillation mea-515

surements with waveform analysis and ML techniques.516

Di↵erent ML models and neutrino event generators are517

tested and give consistent results. The performance dif-518

ferences obtained are small and can be treated as system-519

atic uncertainties. This method also has the advantage520

of reconstructing the neutrino direction directly rather521

than the final-state charged lepton direction, which can522

potentially further improve the neutrino oscillation sensi-523

tivity. Combined with good energy resolution, this work524

makes a large-volume LS detector such as JUNO an ex-525

cellent candidate for future atmospheric neutrino oscilla-526

tion measurements.527
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µ

Topological Reconstruction (directionality) Energy Reconstruction with Graph
Convolution Neural Networks (GCNN)

● JUNO will be largest ever build
liquid scintillatior (LS) detector

● Enhance JUNO sensitivity to neutrino

mass ordering (NMO) via combined

analysis with reactor anti-neutrinos.

● Provide the first flux measurement

with a large liquid scintillator detector

and in the sub-GeV energy region.

● Accessible from the first year of data

taking, with O(10) events/day.

Why Atmospheric 
Neutrinos in JUNO?

Atmospheric Neutrinos in a Nutshell

Neutrinos propagate through the Earth -> matter effects modify the oscillation pattern

Inverted orderingNormal ordering
Oscillation
probability
depends on 
energy and 
zenith angle

Summary and Outlook

Includes: full simulation with electronics effects + waveform reconstruction

Graph Convolution:
● Graph represents detector geometry

-> one node = one photomultiplier (PMT)

● Convolution based on Kipf and Welling [2]

● Reconstruction of the visible energy in energy range [100MeV, 15GeV]

● Offset removed via linear bias correction

● Resolution: dE = (Etrue - Ereco)/Etrue

Resulting energy resolution of ~ 2%

Results:
[2] Kipf and Welling, arXiv:1609.02907
[3] M. Bachlechner et al., arXiv:2208.05952

-> Promising direction reconstruction performance for GeV events

Source:

νμ,e : π and K decays

Initiated by primary cosmic 

rays hitting the atmosphere

Results:

● Energy and direction reconstruction for atmospheric neutrinos

are feasible in JUNO -> oscillation and NMO study ongoing

● Ongoing:
○ Particle identification via machine learning (GCNN).

○ Separate hadronic contribution to improve direction reconstruction
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Input data:
- First hit time per

- Charge per PMT (Graph)

- Charge VS time distribution

(summer over all PMTs)

Architecture:
1) Graph Convolution:

- Alternate with ResNet Blocks

- Apply graph partition pooling [3]

2) 1D convolution on charge over time

3) Fully Connected Layers:

- Combine 1) and 2) outputs

Case 1: hadron energy is negligible Case 2: hadron energy is non negligible

µ

Legend:
– muon track

(Monte Carlo)

[1] H. Rebber et al. 2021 JINST 16 P01016

Example: two νμ charged current events of ~3 GeV

- tref smeared by PMT transit time spread (TTS)
- ȓref smeared by vertex uncertainty of 25 cm

reference time and vertex: (t
ref

, ȓ
ref

)

Analytical probability density functions
(based on scintillation and optical properties):

Idea: Reconstruct the photon emission probability distribution based

on the detected hit charges and times [1].

Principle:
PMT

Atmospheric neutrino reconstruction in JUNO
M. Colomer Molla1, M. Rifai2,3 and R. Wirth4

On behalf of the JUNO collaboration
1 Université Libre de Bruxelles (ULB), Brussels

2 Forschungszentrum Jülich GmbH, Nuclear Physics Institute IKP-2, Jülich

3 III. Physikalisches Institut B, RWTH Aachen University, Aachen

4 Institute of Experimental Physics, University of Hamburg, Hamburg

µ

Topological Reconstruction (directionality) Energy Reconstruction with Graph
Convolution Neural Networks (GCNN)

● JUNO will be largest ever build
liquid scintillatior (LS) detector

● Enhance JUNO sensitivity to neutrino

mass ordering (NMO) via combined

analysis with reactor anti-neutrinos.

● Provide the first flux measurement

with a large liquid scintillator detector

and in the sub-GeV energy region.

● Accessible from the first year of data

taking, with O(10) events/day.

Why Atmospheric 
Neutrinos in JUNO?

Atmospheric Neutrinos in a Nutshell

Neutrinos propagate through the Earth -> matter effects modify the oscillation pattern

Inverted orderingNormal ordering
Oscillation
probability
depends on 
energy and 
zenith angle

Summary and Outlook

Includes: full simulation with electronics effects + waveform reconstruction

Graph Convolution:
● Graph represents detector geometry

-> one node = one photomultiplier (PMT)

● Convolution based on Kipf and Welling [2]

● Reconstruction of the visible energy in energy range [100MeV, 15GeV]

● Offset removed via linear bias correction

● Resolution: dE = (Etrue - Ereco)/Etrue

Resulting energy resolution of ~ 2%

Results:
[2] Kipf and Welling, arXiv:1609.02907
[3] M. Bachlechner et al., arXiv:2208.05952

-> Promising direction reconstruction performance for GeV events

Source:

νμ,e : π and K decays

Initiated by primary cosmic 

rays hitting the atmosphere

Results:

● Energy and direction reconstruction for atmospheric neutrinos

are feasible in JUNO -> oscillation and NMO study ongoing

● Ongoing:
○ Particle identification via machine learning (GCNN).

○ Separate hadronic contribution to improve direction reconstruction

Distance [cm]

A
n

g
le

[r
a

d
]

Oscillations of atmospheric neutrinos :  P𝝂𝝁 -> 𝝂𝝁 Normal (NO) vs Inverted (IO) ordering  

Distance [cm]

A
n

g
le

[r
a

d
]

D
e

t
e

c
t
io

n
p

r
o

b
a

b
il
it

y

MC truth Energy [GeV] MC truth Energy [GeV] 

R
e

c
o

n
s
t
r
u

c
t
e

d
 
E

n
e

r
g

y
 [

G
e

V
] 

Input data:
- First hit time per

- Charge per PMT (Graph)

- Charge VS time distribution

(summer over all PMTs)

Architecture:
1) Graph Convolution:

- Alternate with ResNet Blocks

- Apply graph partition pooling [3]

2) 1D convolution on charge over time

3) Fully Connected Layers:

- Combine 1) and 2) outputs

Case 1: hadron energy is negligible Case 2: hadron energy is non negligible

µ

Legend:
– muon track

(Monte Carlo)

[1] H. Rebber et al. 2021 JINST 16 P01016

Example: two νμ charged current events of ~3 GeV

- tref smeared by PMT transit time spread (TTS)
- ȓref smeared by vertex uncertainty of 25 cm

reference time and vertex: (t
ref

, ȓ
ref

)

Analytical probability density functions
(based on scintillation and optical properties):

Idea: Reconstruct the photon emission probability distribution based

on the detected hit charges and times [1].

Principle:
PMT

Atmospheric neutrino reconstruction in JUNO
M. Colomer Molla1, M. Rifai2,3 and R. Wirth4

On behalf of the JUNO collaboration
1 Université Libre de Bruxelles (ULB), Brussels

2 Forschungszentrum Jülich GmbH, Nuclear Physics Institute IKP-2, Jülich

3 III. Physikalisches Institut B, RWTH Aachen University, Aachen

4 Institute of Experimental Physics, University of Hamburg, Hamburg

µ

Topological Reconstruction (directionality) Energy Reconstruction with Graph
Convolution Neural Networks (GCNN)

● JUNO will be largest ever build
liquid scintillatior (LS) detector

● Enhance JUNO sensitivity to neutrino

mass ordering (NMO) via combined

analysis with reactor anti-neutrinos.

● Provide the first flux measurement

with a large liquid scintillator detector

and in the sub-GeV energy region.

● Accessible from the first year of data

taking, with O(10) events/day.

Why Atmospheric 
Neutrinos in JUNO?

Atmospheric Neutrinos in a Nutshell

Neutrinos propagate through the Earth -> matter effects modify the oscillation pattern

Inverted orderingNormal ordering
Oscillation
probability
depends on 
energy and 
zenith angle

Summary and Outlook

Includes: full simulation with electronics effects + waveform reconstruction

Graph Convolution:
● Graph represents detector geometry

-> one node = one photomultiplier (PMT)

● Convolution based on Kipf and Welling [2]

● Reconstruction of the visible energy in energy range [100MeV, 15GeV]

● Offset removed via linear bias correction

● Resolution: dE = (Etrue - Ereco)/Etrue

Resulting energy resolution of ~ 2%

Results:
[2] Kipf and Welling, arXiv:1609.02907
[3] M. Bachlechner et al., arXiv:2208.05952

-> Promising direction reconstruction performance for GeV events

Source:

νμ,e : π and K decays

Initiated by primary cosmic 

rays hitting the atmosphere

Results:

● Energy and direction reconstruction for atmospheric neutrinos

are feasible in JUNO -> oscillation and NMO study ongoing

● Ongoing:
○ Particle identification via machine learning (GCNN).

○ Separate hadronic contribution to improve direction reconstruction

Distance [cm]

A
n

g
le

[r
a

d
]

Oscillations of atmospheric neutrinos :  P𝝂𝝁 -> 𝝂𝝁 Normal (NO) vs Inverted (IO) ordering  

Distance [cm]

A
n

g
le

[r
a

d
]

D
e

t
e

c
t
io

n
p

r
o

b
a

b
il
it

y

MC truth Energy [GeV] MC truth Energy [GeV] 

R
e

c
o

n
s
t
r
u

c
t
e

d
 
E

n
e

r
g

y
 [

G
e

V
] 

Input data:
- First hit time per

- Charge per PMT (Graph)

- Charge VS time distribution

(summer over all PMTs)

Architecture:
1) Graph Convolution:

- Alternate with ResNet Blocks

- Apply graph partition pooling [3]

2) 1D convolution on charge over time

3) Fully Connected Layers:

- Combine 1) and 2) outputs

Case 1: hadron energy is negligible Case 2: hadron energy is non negligible

µ

Legend:
– muon track

(Monte Carlo)

[1] H. Rebber et al. 2021 JINST 16 P01016

Example: two νμ charged current events of ~3 GeV

- tref smeared by PMT transit time spread (TTS)
- ȓref smeared by vertex uncertainty of 25 cm

reference time and vertex: (t
ref

, ȓ
ref

)

Analytical probability density functions
(based on scintillation and optical properties):

Idea: Reconstruct the photon emission probability distribution based

on the detected hit charges and times [1].

Principle:
PMT

• Idea: Reconstruct the photon emission probability 
distribution based on the detected PMT hit 
charges and times. 
 
 
 

• Event directionality and more can be extracted 
from the reconstructed probability distribution.


• Will cross-check with the results from ML.
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- tref smeared by PMT transit time spread (TTS)
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Analytical probability density functions
(based on scintillation and optical properties):

Idea: Reconstruct the photon emission probability distribution based

on the detected hit charges and times [1].

Principle:
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~3 GeV -CC event with low νμ ybj ~3 GeV -CC event with high νμ ybj10


