

Detector and First Physics Results

Deion Fellers (University of Oregon)

on behalf of the FASER collaboration

TIPP Conference

September 4th, 2023

Additional US support from:

FASER Overview

- FASER is a new experiment at the LHC
 - Built in 2019-2021
 - Successfully collected data throughout current LHC Run 3 (2022 and 2023)
- Located along the longitudinal beam axis, 480m from the ATLAS interaction point
 - LHC magnets and 100m of rock stop most particles
 - Sensitive to light and weakly interacting particles
- Our first physics results were released this year (using 2022 data)
 - Probed dark photon phase space that was previously unconstrained
 - First direct observation of collider neutrinos

FASER Detector

Detector Performance

- Tracking spectrometer
 - 1. Total number of dead/noisy strips < 0.5%
 - 2. Hit efficiency of 99.6±0.1%
 - 3. Spatial resolution of ~30 um in precision direction after alignment
 - ~ 500 um in other direction

Detector Performance (2)

- Veto Scintillators
 - 4. >99.999% veto efficiency for each veto scintillator

- Calorimeter
 - 5. Energy resolution of O(1%) at high energy
 - 6. Timing resolution of ~250 ps allows for efficient rejection of beam-induced background

Search for Dark Photons

- Dark photon (A') is a common feature of hidden sector models
 - Weakly coupled to SM via kinetic mixing (ϵ) with SM photon

$$\mathcal{L} \supset \frac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'^2 - \epsilon e \sum_f q_f \bar{f} \mathcal{A}' f$$

- MeV-scale dark photons are produced mainly in light meson decays at the LHC
- FASER targets small ε, highly boosted, MeV-scale massive dark photons which have decay lengths ideal for FASER

$$L = c\beta\tau\gamma \approx (80 \text{ m}) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

• Will decay 100% to e+e- pair for $1 < m_{A'} < 211 \text{ MeV}$

Dark Photon Event Selection

• Signal: $\pi/\eta \rightarrow A'\gamma$, A' travels hundreds of meters through LHC magnets and rock/concrete, then decays $A' \rightarrow e^+e^-$ inside FASER

- Event selection:
 - LHC collision event with good data quality
 - No signal in any of the 5 veto scintillators
 - Timing and preshower scintillators consistent with \geq 2 MIPs
 - Exactly 2 good tracks (p > 20 GeV and r < 95 mm, extrapolating to r < 95 mm at vetos)
 - Calorimeter energy > 500 GeV
- Provides a nearly background free analysis
 - Neutrino interactions constitute the main background
 - Total background estimated to be $(2.3 \pm 2.3) \times 10^{-3}$ events in 27 fb⁻¹ of data

Dark Photon Unblinded Data

Dark Photon Exclusion

- With null-result, FASER sets limits on previously unexplored parameter space
 - Extends exclusion into region motivated by thermal relic dark matter
- Analysis also excludes new parameter space of a massive gauge boson from a U(1)_{B-L} model
- See paper for more details on A' and B-L analysis: <u>https://arxiv.org/abs/2308.05587</u>

Collider Neutrinos

- Neutrinos produced copiously in decays of forward hadrons
 - Highly energetic (TeV scale) \rightarrow larger interaction cross section
- FASER is sensitive to an exciting neutrino program
 - Collider neutrinos have never been directly observed before
 - Energy range complementary to existing neutrino experiments
 - highest energy man-made neutrinos
 - Neutrinos probe forward hadron production

For 35 fb ⁻¹	Ve	ν _μ	ντ
Main source	Kaons	Pions	Charm
# traversing FASERv	~10 ¹⁰	~10 ¹¹	~10 ⁸
# interacting in FASERv	≈200	≈1200	≈4

Collider Neutrinos

Muon Neutrinos in FASER

Signal: v_{μ} passes through front veto station undetected, then interacts in FASERv tungsten and emits a high energy muon through the rest of FASER

Deion Fellers

Event Selection:

- 1. LHC collision event and good data quality
- 2. No signal in front veto station
 - Signal in all other scintillator stations
- 3. Exactly 1 high momentum track that passes through the front veto station when extrapolated back
 - p > 100 GeV and $\theta < 25$ mrad
 - r < 95 mm in tracking stations
 - r < 120 mm when extrapolating to front veto

Muon Neutrino Results

- Upon unblinding find 153 $^{+12}_{-13}$ (*stat.*) $^{+2}_{-2}$ (*bkg.*) ν_{μ} events
 - Main bkg. from uncertainty in estimation of large-angled muons that miss the front veto station and then scatter in FASERv emulsion
 - Significance of 16σ
- First direct detection of collider neutrinos!
 - Published in PRL: <u>PhysRevLett.131.031801</u>
- Candidate neutrino event distributions match expectations from GENIE MC

15

Note that no experimental uncertainties are included on the simulated sample (e.g. assume perfect alignment, no errors on efficiencies, etc.)

Electron Neutrinos in FASERv

Future Preshower Upgrade

- Approved detector upgrade to add high resolution spatial sensitivity to our preshower
 - https://cds.cern.ch/record/2803084
 - Can identify 2 high energy photon showers separated by $\geq 200~\text{um}$
 - Will allow for sensitivity to di-photon signals
 - e.g. axion-like particles
- Upgrade to 6 layers of tungsten and monolithic silicon pixel sensors
 - Currently have 2 layers of tungsten and scintillator
- Si pixel layers allow for ~100 μm resolution
 - 11.5 million pixels total in preshower

- 130 nm SiGe BiCMOS technology - Hexagons with 65 μm sides
- 50 μ m thick Si
- < 300 ps timing resolution
- Plan to install in late 2024
 - Construction and commissioning in progress

Forward Physics Facility (FPF)

• Proposed facility at CERN to host suite of forward experiments during HL-LHC era

• FASER2

- Radius increased from 10 cm to 1 m
- Acceptance (π_0) increased from 0.6% to 10%
- Sensitivity improved by several orders of magnitude in many models
- FASER ν 2
 - Increase target from 1 ton to 20 tons
 - 25×30×100 cm → 40×40×800 cm
 - $O(10^5)\nu_e$, $O(10^6)\nu_\mu$, and $O(10^4)\nu_\tau$ expected in O(10) ton detector
- Checkout FPF white-paper for more details
 - <u>https://arxiv.org/abs/2203.05090</u>

FPF studies supported by:

Summary

- FASER is a new far-forward detector at the LHC that is sensitive to long-lived particles
- Successfully took data in the first 2 years of LHC Run 3
- Excluded previously unprobed parameter phase space of both the dark photon and B-L gauge boson
 - Probes new territory in interesting thermal-relic region
- First *direct* detection of collider neutrinos!
 - Reconstructed ~150 ν_{μ} CC interactions in FASER spectrometer
 - Found 3 v_e CC candidate events in subset of FASERv emulsion
- More BSM searches and neutrino measurements to come
- Future planned and proposed detector upgrades will expand FASER's physics reach

