

FELIX Phase II The ATLAS readout system for LHC Run 4

Frans Schreuder f.schreuder@nikhef.nl On behalf of the ATLAS TDAQ collaboration

September 4-8, 2023

ATLAS Detector - Upgrades for Run 3

In Run 3:

- Similar conditions to Run 2, higher energy: 13.6 TeV
- New detector and trigger system to improve background rejection
- New readout system: FELIX and Software ROD for new systems

ATLAS Trigger and DAQ in Run 3

New readout chain for upgraded systems

High-Level Trigger Farm

Front-End Link eXchange (FELIX)

- Custom FPGA based PCIe cards installed in commercial servers
- Readout, trigger, clock distribution, Slow Control, BUSY
- 100 cards, 60 host servers
- Removes one layer of custom electronics

Software Readout Driver (SW ROD)

- Builds and aggregates events, detector-specific data processing
- 30 servers

ATLAS Trigger and DAQ in Run 4 Phase II Upgrade, 2029-2032

Front-End Link eXchange (FELIX)

- Implemented for all subdetector systems
- x10 low level trigger rate (1 MHz)
- x3 interactions per bunch crossing (200)
- x20 readout data rate (4.6 TB/s)

Data Handlers

- Evolution of SW ROD with similar functionality
- Interfaces to the high level trigger farm

Atlas Phase II upgrade - LHC Run 4

- Upgraded Trigger and Data Acquisition
- New Inner Tracker
 - ITk Pixel
 - ITk Strips
- High Granularity Timing Detector (HGTD)
- New Muon chambers
 - Inner barrel region, new RPCs, sMDTs and TGCs
- Electronics upgrades, including LAr, Tile and Muon
- Additional small upgrades

5 FELIX Phase II The ATLAS readout system for LHC Run 4 1 T. Affolder, ATLAS Phase II Upgrade

ATLAS Subdetectors - Link protocols

ITk Pixel 220 4684 1564	ITk Strips 76 1824 1552	LAr LASP 50 554 554 554	LAr LASP TTC	LAr LDPB 6 116	LAr LDPB TTC 2 0 30
LAr LATS TTC	LAr LTDB 32 620 620	L0Calo 8 120 16	NSW 120 2880 1728	NSW TP 4 96 96	RPC Barrel SL
CTP 1 12 0	MUCTPI	MDT TP 64 536 64 64	Global GEP 7 50 50	Global MUX 4 74 74 74	Tile 16 288 288
TGC Endcap 8 192 192 192	HGTD 48 48 1152 1152	HGTD Lumi 32 768 768 768	BCM' 2 12 12	LUCID 1 4 4 4 4	ZDC
AED					

lpGBT

2.57 Gb

12

12

FELIX cards Links to FELIX Links to Frontend

- Four link protocols, various new protocols on top
- lpGBT and GBT
 - Radiation hard ASIC for on-detector electronics
 - Logical links (E-Links)
 - Aurora, 8b10b, 6b8b, HDLC, TTC ¹, Endeavour (custom protocol for ITk)
- FULL (8b10b) and Interlaken
 - FPGA \rightarrow FELIX communication
 - Distribute Timing, trigger and control over 8b10b link

6 FELIX Phase || The ATLAS readout system for LHC Run 4 1 TTC: Trig

10.26Gb 25.78 Gb 9.618 Gb 24.809 Gb

9.618 Gb 9.618 Gb 4.809 G

Interlaken FULL

GBT

¹ TTC: Trigger, timing and control

FELIX Phase | system (Run 3)

- Used extensively for Phase II development
 - FELIX firmware and software development
 - Subdetector integration

The FLX-712 card

- FPGA: Xilinx Kintex UltraScale XCKU115
- 4 or 8 MiniPODs to support 24 or 48 bidirectional optical links
- 16-lane PCIe Gen3 interface (120 Gb/s)
- Interface for Trigger/Timing/Control (TTC) and BUSY

Server

- Intel Xeon E5-1660 v4 @ 3.2GHz
- 32 GB DDR4 2667 MHz memory
- Mellanox Connect-X 25/100 GbE

FELIX Phase II system (Run 4)

- Design of an alternative card with AMD Versal Premium VP1552 in progress: FLX-155
 - PCle Gen5x16 interface (482 Gb/s)
 - 2x 8 lanes bifurcated
 - Up to 48 bidirectional optical links

The FLX-182 card

- FPGA: AMD Versal Prime VM1802
- 4 Firefly transceivers to support 24 bidirectional optical links
 - Up to 25 Gb/s per link
- 1 Firefly for LTI/TTC interface
 - New protocol for Timing, Trigger and Control
 - 100Gb/s Ethernet or White Rabbit are optional
- 16-lane PCIe Gen4 interface (240 Gb/s)
 - 2x 8 lanes bifurcated

Server hardware for testing

- AMD Epyc 9004 CPU (Genoa)
- 96 GB DDR5
- Dual 200 Gb/s Ethernet on PCle Gen5

The FLX-182 card

Accessing Linux running on the SoC

- FELIX dataflow is handled by the Versal programmable logic (PL)
- The Versal Processing system, running PetaLinux, handles tasks such as
 - Internal temperature and voltage monitoring
 - Updating the FLX-182's flash memory
 - A built-in self test
- PetaLinux can be accessed through a direct 1 GbE connection via the bracket, or using a virtual network connection over PCle¹
 - A virtual network device is exposed on the FLX-182's PCIe device to the host
 - In the programmable logic, this network connects through AXI4 to the processing system
 - A virtual network device is created in Petalinux
 - This allows control using SSH, HTTPS, etc.

 FELIX Phase II

 The ATLAS readout system for LHC Run 4
 1 E. Zhivun

¹ E. Zhivun, FELIX Versal example drivers

The FLX-182 card

Built-in self test

- A Built-in self test (BIST) for the FLX-182 card was developed
- The BIST runs on the Versal processing system
- Capable of testing and monitoring the card, also for production tests
 - Monitoring all I2C peripherals on the board
 - Test fiber and PCIe links using fiber- and PCIe loopback (Eye scan)
 - Generate a test report which can be automatically published in a database

Temperature monitor

المول Value mex.max 0.10 C mex.max 0.10 C min_main 3.30 C temp 3.30 C Voltage monitor 50 C texp 50 C	Value 0.076/V 0.0375/V 0.0375/V 0.0376/V 0.0376/V
میریمه ۵۱.۲ min ۵1.2 min_unh 0.80 temp 3.92 Voltage monitor 1.92 sty.ersc, 08 1.92 sty.ersc, 19.4 1.92	Value 0.055 V 0.055 V 0.056 V 0.056 V
	Value 0.076 V 0.075 V 0.076 V 0.076 V
անչան հեշ ետր 3:50 Voltage monitor նոչք քիչյուլ 100 քիչյուլ 100 քիչյուլ 100 քիչյուլ 100 քիչյուլ 100 քիչյուլ 100	Value 0.876 V 0.875 V 0.876 V 0.876 V
لدسه ۲۵۵۵ Voltage monitor ۱۹۷۶,«۳۰۰۰, ۱۵۵ ۱۹۷۶,«۳۰۰۰, ۱۵۹ ۱۹۷۶,«۳۰۰۰, ۱۵۹ ۱۹۷۶,«۳۰۰۰, ۱۵۹ ۱۹۷۶,«۳۰۰۰, ۱۵۹	Value 0.876 V 0.875 V 0.876 V 0.876 V 0.876 V
Voltage monitor Input 197,mmc,103 197,mmc,104 197,mmc,105 197,mmc,106 105 mmc,106	Value 0.876 V 0.875 V 0.876 V 0.876 V 0.876 V
інры (19), жес, 100 (29), жес, 104 (19), жес, 105 (19), жес, 106 (19), жес, 106	Value 0.875 V 0.875 V 0.876 V
yly_arrec_103 yly_arrec_104 yly_arrec_106 yly_arrec_106	0.876 V 0.875 V 0.876 V 0.876 V
gty_arrec_104 gty_arrec_105 gty_arrec_106	0.875 V 0.876 V 0.876 V
gty_avec_105 gty_avec_106 atu avec_200	0.876 V 0.876 V 0.879 V
gty_avec_106	0.876 V
ate aver 200	0.879.1/
3.1 arres	0.0194
gty_avec_201	0.879 V
EireEly 1 (130, 131) Physical Loophark	
FF1.0 FF1.1 FF1.2	(f))
FF1_4 FF1_5 FF1_6	FF1_7
FF1_8 FF1_9 FF1_10	FF1_11
	And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) Physical Landow V (1, 10) And Y 1 (10, 10) Physical Landow V (1, 10) Physical LandowV (1, 10) Physical LandowV (1, 10) Physical LandowV (1, 10) Physi

Firmware upgrade for Phase II / Run 4

- PCle DMA Core (Wupper)
 - Adds support for Gen4 and Gen5
 - Two PCIe endpoints per card
 - 5 ToHost, 2 FromHost DMA channels allowing multithreading and separate streams
- More modular design, separation between routing and encoding / decoding
 - AXI4 stream to communicate between blocks
- Encoding / Decoding / Link wrapper
 - Support for IpGBT and 25 Gb/s Interlaken
 - IpGBT E-Links support Aurora, 6b8b, 8b10b, HDLC, Endeavour
- New interface for trigger / timing control

11 FELIX Phase II The ATLAS readout system for LHC Run 4 F. Schreuder, FELIX Phase2 firmware specs

FELIX Timing, Trigger and Control

LTI-FE data format

• 9.61896 Gb/s 8b10b

- LTI distributes the LHC clock, along with trigger and control information to FELIX
 - Clock is compensated for long term phase drift with TCLink
- FELIX redistributes the clock to Frontend Electronics
 - Using GBT, |pGBT or new LTI-FE format
 - Clock phase is compensated with TCLink
- An LTI format data emulator based on an off the shelf Zynq Ultrascale+ board was developed for lab set-ups.

12 FELIX Phase II The ATLAS readout system for LHC Run 4

Timing Compensated Link - TCLink • Improving startup phase determinism on

- Several subdetectors, especially new High Granularity Timing Detector (HGTD), require clock distribution with < 5 ps precision
- TCLink was designed to improve long term phase stability¹
- Startup phase determinism on Virtex Ultrascale + and Versal Prime worse than KU with default TCLink design²

- Additional phase detector (DDMTD) to measure TXOUTCLK to ensure a deterministic startup phase
- Initial system works, must be tailored for Versal

FELIX Software evolution for Phase II

Revised Netio-next design

 Netio-next provides a protocol-agnostic API for network I/O

FELIX Phase II

14

- Phase I experience suggests 3 possible improvements
 - Versatility, modularity, maintainability
 - Unchanged user interface except for feature requests
 - Netio-next implements API to abstract underlying network
 - Port C to C++
 - DCS¹ and calibration dataflow
 - Dedicated DCS buffers and threads
 - TCP/IP instead of RDMA
 - Readout dataflow
 - Felix-star performance towards 1 MHz
 - Up to 10 DMA threads per PCIe card
 - Optionally align data by LOID to move work load from data handler to FELIX

The ATLAS readout system for LHC Run 4 1 DCS: Detector Control System

FELIX in the wild

More information in backup slides

- 2 MHz readout via FELIX
- 15360 channels, 55 GB/s throughput
- Data taking started in 2018

NA62

- Kaon physics experiment
- At CERN SPS
- Readout with FELIX

- Located at RHIC, BNL
- 3 subdetectors readout with FELIX
- Streaming and triggered readout

SPIDR4

- Readout of Timepix4 pixel sensor
- Modified version of FELIX firmware and software

Summary

- The ATLAS Phase II upgrade is planned to be ready for LHC Run4 in 2029
- As part of the DAQ upgrade FELIX upgraded
 - New hardware design following increased bandwidth
 - Firmware redesigned to be more modular and added protocols to support all subdetectors and low level trigger systems
 - Software being redesigned for performance, modularity and different dataflows
- FELIX becoming more widely used in various forms outside ATLAS

Backup Slides

17 FELIX Phase II The ATLAS readout system for LHC Run 4

ATLAS DAQ Architecture in Run 2

Before FELIX, 2015-2018

Readout Driver (ROD)

- Several types of links from FrontEnd to ROD
- VME boards, of about a dozen flavours developed and maintained by detectors
- Optical p2p link to ROBinNP cards

Readout System (ROS)

- Commodity computers hosting the ROBinNPs
- Transfers data to the High-Level Trigger farm over the network

18 FELIX Phase II The ATLAS readout system for LHC Run 4

FELIX in the wild - protoDUNE-SP

ProtoDUNE single phase

- Demonstrator of design, construction, and operation of the DUNE TPC technologies
- Cryostat dimensions: 10x10x10 m, 750 ton of LAr
- Charged particle beam from SPS beam on target
- Test beam results published in arXiv:2007.06722

DAQ system^{1,2}

- Continuous readout of TPC at 2 MHz via FELIX
- 15360 channels, 55 GB/s throughput
- Improved efficiency of FELIX firmware and software, merged into FELIX
- Data taking started in 2018

19 FELIX Phase II The ATLAS readout system for LHC Run 4

https://doi.org/10.1051/epjconf/201921401013
 R. Sipos, IX Workshop on Streaming Readout

FELIX in the wild - NA62

- NA62 is a Kaon physics experiment located in the north area of the CERN SPS
- Kaon decay products detected using a wide range of detectors along a 270m long beamline.
- L0 trigger in hardware, 1 MHz max event rate
- L1 software trigger reduces event rate to 100 kHz
- Moved to a FELIX based readout system ¹
- Felix is used to

20

- buffer data: hits are indexed and trigger matching extracts relevant hits
- distribute clock
- manage synchronous communication for control and configuration

FELIX Phase II The ATLAS readout system for LHC Run 4 1 M. Boretto, IX Workshop on Streaming Readout

FELIX in the wild - sPHENIX

- Located at RHIC BNL, sPHENIX studies QCD and QGP at different energy scales using p+p or Au+Au collisions
- Three sub-detectors read out with FELIX ¹ in triggered and streaming mode
 - Pixel Vertex detector built with ALPIDE MAPS (\sim 20 Gb/s)
 - Intermediate Silicon Strip Tracker (\sim 7 Gb/s)
 - Compact Time Projection Chamber (\sim 100 Gb/s)

21 FELIX Phase II The ATLAS readout system for LHC Run 4 1 M. Purschke, IEEE-RT 2020

FELIX in the wild - SPIDR4 - Timepix4 readout

- Timepix4 is a large area pixel detector readout chip providing sub 200 ps timestamp binning ¹
- SPIDR4 is a readout solution for the Timepix4 pixel detector ²
- Custom chip board, off-the-shelf PCIe card (BittWare)
- Modified version of FELIX firmware
 - Added custom decoder for 64b66b of TPX4 links
 - Unmodified FELIX CRToHost and Wupper PCIe DMA core
- DAQ software based on FELIX software, tailored for SPIDR4

22 FELIX Phase II The ATLAS readout system for LHC Run 4

¹ X. Llopart, Journal of Instrumentation 2022 ² arXiv:2210.01442