Cryogenic SiPMs for the DUNE experiment

Andrea Falcone TIPP 2023 – 7th September 2023

Deep Underground Neutrino Experiment

Long-baseline (LB - 1300 km) experiment:

- ✓ **Neutrino** and **antineutrino** beams.
- ~ 70 kton volume far detector, 1.5 km underground, divided in 4 modules.
- Multi-technology Near Detector, focused on beam characterization and physics.
- \Box > 20 years foreseen life span.

Primary physics goals:

- ✓ 3-neutrino oscillations parameters: $\nu_{\mu}/\overline{\nu_{\mu}}$ disappearance, $\nu_{e}/\overline{\nu_{e}}$ appearance;
- ✓ δ_{CP} ; mass hierarchy.
- □ Super Nova burst neutrinos.
- Beyond-Standard-Model physics: baryon number violation, sterile neutrinos, non-standard interactions, etc.

Far Detector – Horizontal Drift

- □ Structure wholly suspended on roof.
- □ Alternating Anode and Cathode Plane Assemblies (APA – CPA):
 - ✓ 4 drift volumes, 3.6 m drift;
 - ✓ electric field = 500 V/cm (HV = -180 kV);
 - high-resistivity CPA for fast discharge prevention.
- Anode: 150 APAs, each with 4 wire planes (Grid, 2 x Induction, Collection):
 - ✓ wrapped induction wires;
 - ✓ 2560 wires/unit;
 - \checkmark inter-plane distance = 4.75 mm.

Far Detector – Vertical Drift

X-Arapuca

- □ X-ARAPUCA: internal reflection and highly reflective boxes:
- ✓ efficient conversion of VUV photons;
- ✓ high fraction of captured photons;
- ✓ efficient photosensors.

Charged particle liquid argon scintillation light 127 nm 1

Reflective surface

Horizontal Drift

- □ SuperCell: 6 cells $488 \times 100 \times 8 \text{ mm}^3$.
- □ Module: 4 SC 2092 × 118 × 23 mm³ (bars configuration).
- □ 10 modules / APA.

Vertical Drift

 \Box "4 π " reference design.

320 X-ARAPUCA 60 x 60 cm² on cathode, and 320 + 32 on cryostat membrane (~3 m from cathode), analog readout.

SiPMs

Horizontal Drift:

- ✓ 48 SiPMs per SuperCell;
- ✓ 1 readout channel per SC (passive+active ganging);
- ✓ 288,000 SiPMs in total.

□ Vertical Drift:

- ✓ 160 SiPMs per Plate;
- ✓ 1 readout channel per Plate (passive+active ganging);
- ✓ 107,502 SiPMs in total.
- Two photosensor vendors are being investigated: Hamamatsu Photonics (HPK) and Fondazione Bruno Kessler (FBK);
- ✓ 6 types (splits) of 6x6 mm² SiPMs developed specifically for DUNE: 4 from HPK (S13360 – LQR/HQR – 50/75 µm pitch) and 2 from FBK (NUV-HD-CRYO single/triple trench);

Low level specs	Value
Max nominal operating V	[50 V at cold]
Dark count rate (DCR)	<100 mHz/mm ²
Correlated noise	<35%
Time resolution	<1 µs
Thermal cycles	>20
Recovery time	$\tau \sim a \text{ few } \mu s$
PDE at 87 K	>35% at nominal OV
High level specs	Value
Dynamic range	1-2000 p.e.
S/N>4	Per supercell (48 SiPMs)
Trigger	1.5 p.e.

SiPMs : selection procedure

- 25 SiPMs of each type fully characterized at single SiPM level:
- ✓ IV curve measurements at room T and at 77 K;
- ✓ gain, S/N and DCR measured (77K) at OV to obtain 40%-45%-50% of PDE;
- ✓ 20 thermal cycles with controlled cooling down and warming up;
- ✓ all measurements repeated after the thermal stresses.

SiPMs : selection procedure

- 25 SiPMs of each type fully characterized at single SiPM level:
- ✓ IV curve measurements at room T and at 77 K;
- ✓ gain, S/N and DCR measured (77K) at OV to obtain 40%-45%-50% of PDE;
- ✓ 20 thermal cycles with controlled cooling down and warming up;
- ✓ all measurements repeated after the thermal stresses.

- □ 250 SiPMs per type tested at single SiPM level:
- ✓ IV measurements for all SiPMs at room T and at 77K;
- ✓ 20 thermal cycles with controlled cooling down and warming up;
- ✓ IV measurements repeated for all SiPMs and complete characterization for 5% sample per split.
- Test with 48 SiPM in active ganging at different OV per each split: test of S/N and signal shape.

SiPMs : selection procedure

- 25 SiPMs of each type fully characterized at single SiPM level:
- ✓ IV curve measurements at room T and at 77 K;
- ✓ gain, S/N and DCR measured (77K) at OV to obtain 40%-45%-50% of PDE;
- ✓ 20 thermal cycles with controlled cooling down and warming up;
- ✓ all measurements repeated after the thermal stresses.

- □ 250 SiPMs per type tested at single SiPM level:
- ✓ IV measurements for all SiPMs at room T and at 77K;
- ✓ 20 thermal cycles with controlled cooling down and warming up;
- ✓ IV measurements repeated for all SiPMs and complete characterization for 5% sample per split.
- Test with 48 SiPM in active ganging at different OV per each split: test of S/N and signal shape.

HPK HQR 75 μm and FBK Triple Trench down selected

- □ The technology employed by Hamamatsu^[1]:
- ✓ low terminal capacitance;
- ✓ a new type of metallic resistance with a tunable thermal coefficient;
- high quenching resistance system to suppress largeamplitude afterpulses;
- ✓ allows for careful tuning of the signal shape and fast recovery time at 87 K.

Overvoltage (V)

[1] <u>https://www.hamamatsu.com/content/dam/hamamatsu-</u> photonics/sites/documents/99_SALES_LIBRARY/ssd/s13360_series_kapd1052e.pdf

FBK NUV-HD-CRYO Triple Trech

- □ FBK employed a well-established technology i.e. NUV-HD-CRYO^[2]:
- ✓ low electric field inside the junction to reduce the tunneling generation rate and so the DCR;
- ✓ internal modification of the doping profiles for reduced afterpulsing probability;
- ✓ modified polysilicon quenching resistor with reduced temperature coefficient.
- □ Enlarged tranches to reduce cross talk.

[2] https://doi.org/10.1016/j.nima.2022.167683

Test stands

- INFN and Università of Bologna;
- INFN and Università of Ferrara;
- INFN and Università of Milano-Bicocca;
- Institute of Physics, Czech Academy of Sciences, Prague;
- Instituto de Física Corpuscular, Valencia
- Northern Illinois University, Department of Physics

Laboratories

involved

\mathbf{V}_{bd} and \mathbf{OV}

V_{bd}	НРК	FBK
300 K	51.86±0.33 V	32.70±0.05 V
77 K	41.97±0.32 V	27.09±0.04 V

PDE	НРК	FBK
40 %	3 V OV	3.5 V OV
45 %	4 V OV	4.5 V OV
50 %	5 V OV	7 V OV

PDE	НРК	FBK
40 %	3.73 · 10 ⁶	4.73 · 10 ⁶
45 %	$4.59 \cdot 10^{6}$	6.01 · 10 ⁶
50 %	5.44 · 10 ⁶	8.21 · 10 ⁶

Dark Noise

PDE	DCR (mHz/mm²)	Cross-talk	After pulse
40 %	57.54	6.62	0.86
45 %	64.97	8.97	1.10
50 %	66.32	10.96	1.30
FBK Triple Trench			
	FBI	K Triple Trench	
PDE	FBI DCR (mHz/mm²)	K Triple Trench Cross-talk	After pulse
PDE 40 %	FBI DCR (mHz/mm ²) 80.79	K Triple Trench Cross-talk 13.76	After pulse 2.85
PDE 40 % 45 %	FBI DCR (mHz/mm ²) 80.79 86.33	K Triple Trench Cross-talk 13.76 15.67	After pulse 2.85 3.25
PDE 40 % 45 % 50 %	FBI DCR (mHz/mm ²) 80.79 86.33 93.35	K Triple Trench Cross-talk 13.76 15.67 40.50	After pulse 2.85 3.25 4.05

DUNE

Ganging tests

- □ Test with the **ganging of 48 SiPMs** of a supercell.
- DUNE FD1 amplifier [3]: Two-stage amplifier SiGe bipolar transistor + fully differential op-amp:
- ✓ fast response;
- ✓ dynamic range 2000 p.e. .

	НРК	FBK
Rise time	58 ns	64 ns

Andrea Falcone - 7th September 2023 - TIPP 2023

Ganging tests

□ Good S/N ≈ 5-10 \rightarrow Allows clear separation of photoelectron peaks with 48 SiPMs in parallel.

PDE	НРК	FBK
40 %	5.21	5.69
45 %	5.96	7.16
50 %	6.66	10.34

Future tests

- □ Mass test facilities in place (5 institutes) to test all 300,000 FD-I SiPMs:
- ✓ reject faulty elements;
- ✓ I-V curves to gang SiPMs by similar V_{bd} ;
- ✓ DCR measurement.
- For VD SiPMs are connected in bunch of 20, on flexible PCB.
 Tests for Proto Dune VD Module ongoing:
- ✓ reject faulty elements;
- $\checkmark\,$ I-V curve in reverse mode for $\rm V_{bd}.$

See Marco Guarise talk (06/09)!

Thanks!