

The ATLAS HL-LHC Upgrade program

Claudia Gemme (INFN Genova) On behalf of the **ATLAS Collaboration**

TECHNOLOGY IN INSTRUMENTATION & PARTICLE PHYSICS CONFERENCE 4 - 8 SEPTEMBER 2023

Cape Town International Convention Centre (CTICC)

Science & innovation Department. Science and Innovation REPUBLIC OF SOUTH AFRICA

The High Luminosity LHC

- The LHC accelerator is periodically upgraded to keep exploring the energy frontier...
 - At the same time detectors keep evolving to keep the pace.
- The "HL-LHC" period will start in ~2029, after a three years shutdown, with more than 5 times the initial nominal instantaneous luminosity (i.e. up to 5-7.5 10³⁴ cm⁻²s⁻¹)
 - This will increase the average pile up from current $\mu \sim 50$ to $\mu = 200$

PublicPlots

The High Luminosity LHC

- The LHC accelerator is periodically upgraded to keep exploring the energy frontier...
 - At the same time detectors keep evolving to keep the pace.
- The "HL-LHC" period will start in ~2029, after a three years shutdown, with more than 5 times the initial nominal instantaneous luminosity (i.e. up to 5-7.5 10³⁴ cm⁻²s⁻¹)
 - This will increase the average pile up from current $\mu \sim 50$ to $\mu = 200$
- A total integrated luminosity up to 4000 ifb will be collected (340 ifb so far!)
 - Data will be essential to improve the knowledge of the Higgs couplings from ~12% to few %, measure the Higgs self coupling, extend the searches for physics beyond the

TIPP 2023 Standard model, accomplish electroweak precision measurements, etc C. Gemme

ATLAS for HL-LHC

- Need to upgrade ATLAS experiment to deal with more "messy" events, and more radiation damage.
- To fulfil the physics goals the detector should
 - Measure all relevant final states (leptons, photons, jets, missing E_T , ...) with at least comparable precision as in current run, in a much harsher environment
 - Be very radiation hard, (eg: Inner Tracker ~ 10e16 n_{eq}/cm^2 i.e. ~x10 higher)
 - Improve the triggering capabilities: trigger rate x10 higher while keeping same lepton p_T threshold
 - Improve the read-out capabilities: read-out detectors at 1 MHz

TIPP 2023 C. Gemme

Some more challenges

- Technical challenges coming from the HL-LHC are huge and complicated, examples in the next slides.
- HL-LHC phase also calls for new collaboration organization:
 - For the first time some detector deliverables are common to the LHC experiments (not only R&D): notably, the Pixel 65 nm readout ASIC and the CO₂ cooling systems for the trackers have been shared between ATLAS and CMS.
 - A large community is needed to build and fund such challenging "home-made" detectors. But the **management** of a such large community in our "scientific style" is not easy.
 - With respect to the initial detectors construction, now the **same community must deal** with data analysis, detector operation and maintenance, and upgrade.
- Some detectors are there since almost 20 years!
 - Beyond the upgrades, it is important also to focus on the possibility to reliably run the "legacy" detectors for more than another decade: making access easier, adding redundancy, consolidating them is vital.

ATLAS Phase–II Upgrades

Legacy detectors

Several detailed talks at TIPP!

Development and prototype of a new luminometer for the ATLAS experiment during Run 3 and Run 4 of the LHC	Data Preparation	Marco Bruschi
Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector: laboratory and test beam campaigns	HGTD	Mei Zhao
Overview of the ATLAS High-Granularity Timing Detector: project status and results	HGTD	Shahzad Ali
Module development for the ATLAS ITk Pixel Detector	ITK system	Matthias Saimpert
ATLAS ITk Pixel Detector Overview	ITK system	Koji Nakamura
Design and prototyping of large-scale flex circuits for the ATLAS ITk Pixel detector	ITK system	Steven Welch
Loading of ATLAS ITk pixel module on multi flavour local supports	ITK system	Gabriele Chiodini
Novel pixel sensors for the Inner Tracker upgrade of the ATLAS experiment	ITK system	Stefano Terzo
System tests of the ATLAS ITk planar and 3D pixel modules	ITK system	David Vazquez
The ATLAS ITk Strip Detector for the Phase-II LHC Upgrade	ITK system	Jose Bernabeu Verdu
The ATLAS ITk Strip End-of-Substructure Card - From design to production	ITK system	Marcel Stanitzki
Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC	LAr detector system	Arno Straessner
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs	LAr detector system	Etienne Marie Fortin
ATLAS MDT AMT Simulations for LHC Run3 and HL-LHC	T/DAQ system	Jiajin Ge
FELIX Phase II, the ATLAS readout system for LHC Run 4	T/DAQ system	Frans Schreuder
The ATLAS Level-1 Topological Processor: Phase-I upgrade and Phase-II adaptation	T/DAQ system	Emanuel Meuser
Long term aging studies of the new PMTs for the HL-LHC ATLAS hadronic calorimeter upgrade	Tile detector system	Fabrizio Scuri
Long-term stability uncertainty of luminosity measurements of the ATLAS detector in Run 3 during the 2022 data-taking per	r Tile detector system	Phuti Rapheeha
The Phase-II Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC	Tile detector system	Edward Khomotso Nkadimeng
The use of Machine learning to improve quality control for the ATLAS Phase-II Upgrade LVPS bricks at CERN	Tile detector system	Khathutshelo Tony Phadagi

Trigger and DAQ

- Huge increase in data rates and thus data throughput, bringing extra complexity!
- Trigger updates
 - Hardware based Level-0: Trigger data input at 40 MHz from Calorimeters and Muons.
 - Output Rate 1 MHz (currently 100 kHz), latency 10 µs
 - Exploits full detector granularity with new Global Trigger component
 - **Software based Event Filter** (High-Level trigger):
 - Output Rate 10 kHz (currently 3 kHz)
 - Extended tracking range fully exploiting ITk, improved muon trigger efficiency
 - For the Event Filter use commercial hardware, either pure software solution, or GPU or FPGA card acceleration (under evaluation).
- DAQ updates
 - To achieve the requested data throughput, completely new architecture based on custom PCIe FPGA cards (FELIX) instead of VME based readout boards.
 - This evolution has started already in Phase-I.

FELIX Prototype

Systems upgrades

Electromagnetic Calorimeter

- General for Calorimeters
 - New on-detector and off-detector electronics
 - Continuous readout at 40 MHz (no on-detector buffering)
 - Full digital input to ATLAS trigger system
- LAr upgrade happens in two stages:
 - Phase-I (2018-21): Trigger digitization and processing, now in operation
 - Phase-II: Calibration, digitization and signal processing for energy reconstruction
- On-detector
 - New high precision frontend electronics aiming at 16-bit dynamic range and a linearity better than 0.1 %.
 - New ASICS (ADC, calibration DAC & pulser)
- Off-detector
 - ATCA boards for waveform feature extraction (E, time) with a total bandwidth of 345 Tbps

TIPP 2023 C. Gemme

Systems up

FEB2 prototype

Pre-production wafers of FE Board ASICs received

LASP demonstrator under test

Hadronic Calorimeter

- General for Calorimeters
 - New on-detector and off-detector electronics
 - Continuous readout at 40 MHz
 - Full digital input to ATLAS trigger system
 - Tile Calorimeter:
 - New modular mechanical design for better accessibility and maintenance and increasing redundancy.
 - Replacement of the most **exposed PMTs** (about 10%).
 - Replacement of **passive PMT HV-dividers** by active dividers for better response stability.
 - **Phase-II demonstrator** installed (July 2019) in ATLAS and is taking data during Run 3.
 - On-detector electronics at advanced stage, production ongoing.

New modular mechanics

Systems upgrades

1DT: Monitored Drift Chambers RPC: Resistive Plate Chambers TGC: Thin Gap Chamber

TGCs

Muons Spectrometer

- Upgrade readout/trigger electronics
 - all hit data is sent off detector to trigger logic boards with L0 trigger rate of 1 MHz at new latency (10 μ s)
 - New: **MDT** will provide L0 trigger information.
- Additional Barrel Layers of sMDT, RPC, and TGC
 - New **sMDT** BIS chambers (to make space for the RPC)
 - New **RPC** triplets in the inner layer (to improve trigger coverage)
 - New **EIL4 TGG** chambers (to improve trigger rejection)
- Current status
 - All prototypes chambers exist and sMDT production almost finished. **RPC** FE prototypes submitted but critical for the project.

12 m

BOS

BMS

offline

0

L0 efficiency x acceptance for reconstructed muons p_T >25 GeV ATLAS Simulation 3/4 chambers + BIBO 3/4 chambers 3/3 chamb efficiency -0.5 0.5 Run2

MD

TIPP 2023 C. Gemme RPC prototype

sMDT

0 d

A new tracker system, ITk

- Complete replacement of the current Inner Detector with an all-silicon detector in 2T magnetic field.
 - Angular coverage increased from $|\eta| = 2.5$ to 4
- Overall significant improvement thanks to:
 - Reduced material budget → minimize material interactions
 - Finer segmentation \rightarrow improved resolutions
 - Increase in overall hit counts, at least 9 silicon hits per track, and improved hermeticity → tighter track selection

r [mm]

	Surface [m ²]	# Channels	# modules
Strip	165	60 M	18 k
Pixel	13	5.1 G	9.2 k

ITk Pixel

- General characteristics:
 - Organized as **three sub-systems** (inner, outer barrel, outer endcaps)
 - Pixel subsystem covering up to **|n|<4.0** with five Barrel layers + several endcap rings
 - Inner system will be **replaced** at half lifetime due to radiation hardness.
 - Almost 10 times larger than current one in terms of area and number of modules to be built.
 - Modules:
 - Pixel cell size $25 \times 100 \ \mu\text{m}^2$ in L0 barrel and $50 \times 50 \ \mu\text{m}^2$ ٠ (everywhere else)
 - **3D** sensors in the innermost layer and **planar** sensors in the other layers
 - Radiation tolerant up to $\sim 2E16 n_{ea}/cm^2$ ٠
- Status:
 - All sensors are in pre-production ٠
 - Hybridization pre-production modules started •
 - The production readout chip, **ITkPixV2** has been received • and is being tested
 - Demonstrators for all the sub-systems exists and ٠ preproduction of local supports, services has started.

•

TIPP 2023 C. Gemme

ITk Strip

- General characteristics:
 - Organized as two systems (Barrel and Endcaps)
 - Strip subsystem covering up to |n|<2.7 with 4 Barrel layers 6 End-cap disks
 - Almost 3 times larger than current one in terms of area and 5 times as number of modules to be built.
 - Radiation hardness up to 1.6E15 n_{eq}/cm²
- Status:
 - Sensors and ASICs, mechanics in production
 - On detector electronics and modules in preproduction
 - Issue with large noise when operating cold slow down the preproduction for several months, finally understood as caused by vibrations of capacitors on power boards.

Prototype Barrel Stave

Prototype Barrel Module

Efficiency and Noise Occupancy

a full dose irradiated endcap module

New Systems

High Granularity Timing Detector (HGTD)

- HGTD designed to improve ATLAS performance in the forward region in view of increased pile up in the HL-LHC. Also provides **luminosity** information.
- Silicon detector modules mounted on disks.
 - Two disks/side, two sensor layers/disk \rightarrow total **4 layers/side**
 - Target time resolution: 30-50 ps/track up to 4000 ifb •
 - Disk replacement plan to maintain 2.5E15 n_{eq} /cm² level.

140 or 200 multiple interactions

at |z|=3.5 m in front of the LAr EndCap at r in (12, 64) cm → 2.4 < /n/ < 4.0

Inside a bunch crossing, interactions spread longitudinally but also in time.

Therefore, assigning a time to tracks with a good resolution allows to better reconstruct and identify pile-up vertices.

TIPP 2023 C. Gemme

High Granularity Timing Detector (HGTD)

- Sensors:
 - Low Gain Avalanche Detectors (LGAD) arrays with pad size 1.3 x 1.3 mm²
 - Single-event burnout (SEB) was observed on LGAD sensors during beam tests
 - Mitigated by **carbon-infused sensors** (can be operated at decreased high voltage)
 - Established maximum field per sensor thickness. Prototype sensors met radiation tolerance requirements below this critical field.
 - Preproduction mostly completed.
- ASIC:

New Systems

- First full size ALTIROC2 prototypes very successful, not fully rad hard
- Final ASIC prototype ALTIROC3 wafers received and first tests started – rather positive
- Modules:
 - Modules (2 ALTIROCs bump bonded to 2 LGAD sensors) have been demonstrated required resolution
- System Tests:
 - Thermal demonstrator done
 - Electrical demonstrator on-going

LGAD Sensor wafer

Hit Time resolution vs Bias

Conclusions

- ATLAS detector currently undergoing mayor upgrade to optimize the experiment for HL-LHC data taking period
 - Objective is to **maintain or improve physics performance** in view of more demanding environment. To reach the goal:
 - A main upgrade of the trigger and readout system is ongoing
 - Most electronics (DAQ and trigger systems) of the existing detectors will be upgraded to cope with the luminosity increased and increased trigger/readout rate
 - New detectors will be installed (ITk and HGTD, part of the Muon Spectrometer)
- Challenges coming from the HL-LHC are huge and complicated: some of them have been a common effort together with other LHC detectors.
 - This is a **good model** that will be certainly followed in future upgrade to optimize resources
- All detectors are in production, at a different level of progress. **Schedule will also be a challenge**, both for **construction**, including delays from (single) vendors, as well for a very compact **installation** during the next long LHC shutdown.

Additional material

Current detector configuration

19

TGC, optimized for triggering

Physics at HL-LHC

• Example of Higgs sector

Run 2 (red) and projected HL-LHC (blue) expected precision of the H → T⁺T⁻ production mode measurements for ggF, VBF, VH and tanti-tH, scaled to their cross-section expectation values. The precision of the combined result for the inclusive cross-section, also scaled to its expectation value, is included at the bottom. The uncertainty on the predicted signal cross-section for each production mode, illustrating the current (light grey) and projected HL-LHC (hashed) precision of theory calculations, is also shown.

