

TIPP2023 TECHNOLOGY IN INSTRUMENTATION &

4 - 8 SEPTEMBER 2023

cience & innovation

The KM3NeT underwater neutrino telescope: status and future perspective

on behalf of the KM3NeT Collaboration

G. Ferrara

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Outline

Neutrino Astronomy and the KM3NeT project - Technology and infrastructure - Current status and plans

Search for cosmic neutrino sources with ARCA - Sensitivity to Cosmic Neutrino Fluxes - Real time Multi-messenger program

Oscillation research with ORCA

Summary and outlook

Neutrino Astronomy

- Neutrinos: neutral, stable, weakly interacting
 - -not absorbed by background light/CMB (access to cosmological distances)
 - -not absorbed by matter (access to dense environments)
 - -not deviated by magnetic fields (astronomy over a wide energy range)
- Smoking gun' signature for hadronic processes
- Correlated in time/direction with electromagnetic and gravitational waves: Multi Messenger Astronomy

The KM3NeT Collaboration

ORCA (Oscillation Research with Cosmic in the Abyss) ARCA (Astroparticle Research with Cosmics in the Abyss)

56 instituties in 17 countries

TOULON ORCA

Cosmic neutrino detection principle

- Detection of Cherenkov photons induced by the neutrino interaction products using a 3D array of optical sensors
- Large volume of transparent medium to detect cosmic neutrinos —> water/ice
- Time, position and amplitude of PMT pulses (hits) allow both direction and energy reconstruction

Angular ~0.1° at 100 TeV

Angular ~1° at 100 TeV

neutrino ve

The KM3NeT technology and infrastructure

The basic elements:

- DOM (Digital Optical Module)
- DU (Detection Unit)
- Seafloor network: electro-optical cables and JBs (Junction Boxes)

DOM

- ► 17" glass sphere with 31 3" PMTs
- ► LED and Piezo
- Front-end electronics

DU

~ 250/750 m (ORCA/ARCA)
18 DOMs (~9/36 m btw DOMs)
Anchor
Buoy

The KM3NeT technology and infrastructure

All data to shore

ORCA:

- building block (BB) of 115 DUs
- 20 m DU interspacing
- ▶ 9 m inter DOM spacing (7 Mton)

Building Block

ARCA:

- 2 building blocks of 115 DUs
- ▶ 90 m DU interspacing
- 36 m inter DOM spacing
- ► 0.5 km3=500Mton/block

KM3NeT: ARCA and ORCA

KM3NeT

Neutrino telescopes: science with a multi-energy scale

NEUTRINO ENERGY FROM MeV TO PeV

Current status and next sea campaigns

Current Staus:

Next sea campaigns:

From September to Dicember 2023: ARCA: 10 DUs ORCA: 6 DUs + 1 Instrumentation Unit + 1 Calibration Base

21 ARCA DUs & 20 ORCA DUs

Sensitivity to point-like and extended neutrino sources with ARCA

PoS(ICRC2023)1018

Sensitivity to diffuse astrophysical neutrino fluxes

Upper limits to diffuse flux of astrophysical neutrinos assuming IceCube best fit $\gamma = 2.37$ and $\Phi_0 = 3.06$

PoS(ICRC2023)1195

$$\Phi_{\nu+\bar{\nu}}(E) = \frac{dN}{dE} = \phi_0 \cdot 10^{-18} \cdot \left(\frac{E}{100 \text{ TeV}}\right)^{-\gamma} \left[\text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}\right]$$

Astronomy potential for the full ARCA detector

PoS(ICRC2023)1075

Astronomy potential for the full ARCA detector

PoS(ICRC2023)1075

Real time Multi-messenger program

Goals:

- Trigger neutrino alerts to the astronomy community
- Iook for time/space coincidence around external electromagnetic and multi-messenger triggers

Based on:

PoS(ICRC2023)1125

- ► Fast online reconstruction
- Fast selection of high-purity neutrino sample

The program is based on two pipelines: 1. The MeV CCSN monitoring pipeline (ORCA) 2. The GeV-PeV neutrino alert pipeline (ARCA)

ORCA: neutrino oscillation with atmospheric neutrinos

Goals: determine the neutrino mass ordering and measuring atmospheric neutrino oscillations

▶ The experiment focuses on the measurement of the energy- and zenith-angle-dependent oscillation patterns of cosmic-ray-induced neutrinos with a few-GeV energy that originate in the atmosphere and traverse the Earth

► The power to distinguish between the two different mass orderings is linked to the detection of an excess or deficit of neutrino events in different regions of these oscillation patterns.

ORCA6: neutrino oscillation with atmospheric neutrinos

Oscillations are seen with significance > 6σ in L/E distributions

Best fit: $\sin^2 \theta_{23} = 0.51^{+0.06}_{-0.07}$ Normal ordering is preferred

 $\Delta m^{2}{}^{23} = 2.14^{+0.36}_{-0.25} \cdot 10^{-3} eV^{2}$

PoS(ICRC2023)996

Measurement of the atmospheric muon neutrino flux with ORCA6

PoS(ICRC2023)1093

Summary & Outlook

KM3NeT/ARCA: current status 21 DUs, effective area already better than ANTARES The good angular resolution will let KM3NeT/ARCA to contribute to the neutrino astronomy

- detection of the diffuse flux observed by IceCube with 5σ significance in less than a year
- sensitivity to astrophysical sources in the Southern Hemisphere improves by almost 2 orders of magnitude with respect to IceCube
- multi-messenger program

KM3NeT/ORCA: current status 20 DUs Measurement of neutrino oscillations and best fit of oscillation parameters Search for new physics: physics beyond the Standard Model

KM3NeT infrastructure procurement and construction in progress Funding assured for ~125 ARCA DUS and ~50 ORCA DUsimproved results soon!!!

Cube with 5σ significance in less than a year uthern Hemisphere improves by almost 2

 $\mathcal{L} = \mathcal{L}$

Backup slides

 ν / l^{\pm}

$CC v_{\mu}$ 1. track like events

CC v_e + all flavours NC 2. shower like events

Event topologies

 $CC v_{\tau}$ 3. "double bang"

Search for diffuse astrophysical neutrino flux from the Galactic Ridge with ARCA

The methodology adopted for the analysis is an on-off technique Neutrino signal follows a power-law energy spectrum with E0 = 40 TeV

PoS(ICRC2023)1190

$$\Phi_{\nu}(E) = \frac{dN_{\nu}}{dE_{\nu}} = \Phi_0 \times \left(\frac{E_{\nu}}{E_0}\right)^{-\Gamma_{\nu}}$$

ORCA6: neutrino fit systematics uncertainties

ARCA reconstruction resolutions

Track:

Shower:

Track median angular resolution < 0.1° at E>100 TeV

Shower median angular resolution < 2^o

Measurement of atmospheric muon flux

Optical background (⁴⁰K)

Atmospheric muons

Ageron et al. [KM3NeT Coll.], Eur. Phys. J. C 80 (2020) 99

- Measurement of single DOM coincidences
- Validation of the KM3NeT calibration procedure
- muon flux measurement compatible with Bugaev model and ANTARES data

