

PFA reconstruction for the crystal bar ECAL in future lepton colliders

Shengsen Sun on behalf of the CEPC ECAL software working group **IHEP, CAS**

Technology & Instrumentation in Particle Physics (TIPP 2023) Cape Town, South Africa. 4-8 Sep. 2023

Institute of High Energy Physics Chinese Academy of Sciences

Future lepton collider

• Physics after Higgs discovery:

- Precise measurement of Higgs, EW, top, flavor, QCD...
- BSM physics (dark matter, EW phase transition, SUSY, LLP...)

Future lepton collider

Detector requirement:

- For hadronic final states $W^{\pm}/Z/H \rightarrow q\bar{q}$: BMR<4%
- For flavor: precise PID in heavy quark decay
 K/π separation, jet tagging, jet charge, etc.

Particle Flow Approach:

- Measure the jet by its components: $E_{jet} = E_{tracker} + E_{ECAL} + E_{HCAL}$
- Hardware + Software:

2023/9/4

Calorimetry and PFA

• CALICE concept: sampling calorimeter.

- ECAL: Si/Sci + W
- HCAL: Sci/RPC + W/Iron
- High granularity.
- PFA reconstruction: PandoraPFA.

Can we think about a homogeneous ECAL?

Why crystal calorimeter

- A long history in particle physics precise measurement: L3@LEP, BESIII@BEPC, CMS@LHC, HERD, Panda...
- Bright light: $\sigma_E/E \sim 3\%/\sqrt{E}$
 - Photon recovery from bremsstrahlung,
 - π^0 reconstruction.
- Fast response:
 - Introduce timing in PFA.

	Csl	BGO	PbWO ₄	LYSO
R_M (cm)	3.57	2.23	2.00	2.07
<i>X</i> ₀ (cm)	1.86	1.12	0.89	1.14
λ_I (cm)	39.3	22.7	20.7	20.9
Light yield (ph/MeV)	58000	7400	130	30000
Decay time (ns)	1220	300	30	40

BGO for a balance performance & cost.

• New concept of crystal ECAL:

- Advantage:
 - Optimal energy resolution.
 - Better EM sensitivity for flavor physics.
- But at what cost:
 - Larger R_M & smaller $\lambda_I / X_0 \implies$ more shower overlap.

Software task: * Clustering

- * Pattern recognition.
- + Overlap: energy splitting.
- Not self-supporting \implies Need supporting mechanics (dead material).

• New concept of crystal ECAL: orthogonal arranged crystal bars.

- Double-end readout with SiPM (Q, T).
- Cross-location by bars.
- Less readout channels, lower cost.

• New concept of crystal ECAL: orthogonal arranged crystal bars.

- Double-end readout with SiPM (Q, T).
- Cross-location by bars.
- Less readout channels, lower cost.

New challenge: multi-particle ambiguity.

Software task:

- * Clustering
- * Pattern recognition.
- + Overlap: energy splitting.
- + Ambiguity removal

• New concept of crystal ECAL: orthogonal arranged crystal bars.

- Double-end readout with SiPM (Q, T).
- Cross-location by bars.
- Less readout channels, lower cost.

- Software task:
 - * Clustering
 - * Pattern recognition.
 - + Overlap: energy splitting.
 - + Ambiguity removal

Particle flow algorithm

PF performance decoupling

• $\sigma_{jet} \sim \sigma_{trk} \oplus \sigma_{EM} \oplus \sigma_{Had} \oplus \sigma_{confusion}$. Confusion is an important limitation factor.

Contribution	Jet Energy Resolution $rms_{90}(E_j)/E_j$				
	$E_j = 45 \text{GeV}$	$E_j = 100 \text{GeV}$	$E_j = 180 \text{GeV}$	$E_j = 250 \mathrm{GeV}$	
Total	3.7%	2.9 %	3.0%	3.1 %	
Resolution	3.0%	2.0 %	1.6%	1.3 %	
Tracking	1.2%	0.7 %	0.8%	0.8 %	
Leakage	0.1%	0.5 %	0.8%	1.0 %	
Other	0.6%	0.5 %	0.9%	1.0 %	
Confusion	1.7%	1.8 %	2.1%	2.3 %	
i) Confusion (photons)	0.8%	1.0 %	1.1%	1.3 %	
ii) Confusion (neutral hadrons)	0.9%	1.3 %	1.7%	1.8 %	
iii) Confusion (charged hadrons)	1.2%	0.7 %	0.5%	0.2 %	

• Confusion mainly comes from the imperfect pattern recognition.

Particle flow algorithm

• PF performance decoupling

• $\sigma_{jet} \sim \sigma_{trk} \oplus \sigma_{EM} \oplus \sigma_{Had} \oplus \sigma_{confusion}$. Confusion is an important limitation factor.

Contribution		Jet Energy Resolution $rms_{90}(E_j)/E_j$				
	E_j	=45 GeV	$E_j = 100 \text{GeV}$	$E_j = 180 \text{GeV}$	$E_j = 250 \mathrm{GeV}$	
Total		3.7%	2.9 %	3.0%	3.1 %	
Resolution		3.0%	2.0%	1.6%	1.3 %	
Tracking Crystal ECAL improv	ves	1.2%	0.7 %	0.8%	0.8 %	
Leakage the intrinsic resolut	o n	0.1%	0.5 %	0.8%	1.0 %	
Other		0.6%	0.5 %	0.9%	1.0 %	
Confusion		1.7%	1.8 %	2.1 %	2.3 %	
i) Confusion (photons)		0.8%	1.0 %	1.1%	1.3 %	
ii) Confusion (neutral hadrons)		0.9%	1.3 %	1.7%	1.8 %	
iii) Confusion (charged hadrons)		1.2%	0.7 %	0.5 %	0.2 %	

iv) Confusion (ambiguity)

Software task:

- * Clustering
- * Pattern recognition.

+ Improve the performance.

* Overlap: energy splitting.

* Ambiguity problem.

+ Minimize the impact.

PandoraPFA, Nim.A Vol 611, Issue 1, 2009

Simulation

Detector geometry

- Global: octagonal ECAL, R = 1.86 m, L = 6.6 m, H = 28 cm
- Crystal Bar: $1 \times 1 \times 40 \sim 60 \text{ cm}^3$
- Super Cell: 2 layers of perpendicular crossing bars $\sim 40 \times \sim 60 \times 2 \text{ cm}^3$
- Ideal digitization: no dead area, supporting, mechanics, etc.
- How events look like

Reconstruction algorithm

• A pattern recognition PFA

- Shower recognition:
 - Use the local maximum to simplify the pattern in homogeneous ECAL

Shower recognition:

- 3 individual algorithms for different type: track-match, Hough, Cone-clustering.
- A set of topological cluster merging.

Shower recognition:

- 3 individual algorithms for different type: track-match, Hough, Cone-clustering.
- A set of topological cluster merging.

Energy splitting and matching

Splitting for the overlapped shower:

- Calculate the expected energy deposition from EM profile.
 - Expected energy: $E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i x_c|)$
 - Assigned weight: $w_{i\mu} = \frac{E_{i\mu}^{exp}}{\sum_{\mu} E_{i\mu}^{exp}}$
- Ambiguity removal:
 - Information from: track, neighbor tower, time.

- * Clustering
- ✓ * Pattern recognition.
- * Overlap: energy splitting.

Entries

✓ * Ambiguity problem.

Algorithm performance

Photon reconstruction

- Recognition efficiency ~100% for γ with E > 1 GeV
- $H \rightarrow \gamma \gamma$ reconstruction: $\sigma(m_{\gamma \gamma}) \sim 0.32$ GeV.
 - Can improve the $H \rightarrow \gamma \gamma$ measurement precision in CEPC.

2200

1% ⊕ 3%/√E smearing, σ = 0.94 GeV

Algorithm performance

• $\gamma - \gamma$, $\gamma - \pi$ separation

• Separation efficiency ~95% with distance > 30mm.

9

Summary and outlook

9

• A novel design of crystal ECAL for the future lepton colliders

- New homogeneous ECAL design, better energy resolution, less readout channels.
- Can be compatible with Particle Flow and match the physics requirement.
- Module construction and test will be presented in This talk.
- A new pattern recognition PFA for this new design:
 - Main challenges in the software are the overlapping and ambiguity.
 - Series of algorithms are developed and show promising results.
 - Final reconstruction of jets and Boson Mass Resolution (BMR) is under developing.

Look into the future:

- Time information from SiPM can be further used in PFA.
- Deep learning approach: graph neural network, self-attention, etc.
 - Al is always very promising in pattern recognition.

Thank you for your attention!

Backup

Institute of High Energy Physics Chinese Academy of Sciences