

Wavelength-shifting fiber enhancing PMT for the water Cherenkov detector prototype at very high energy Gamma-ray observatory

Hao Sun, Cunfeng Feng, Dong Liu, Shulong Ji

Technology & Instrumentation in Particle Physics (TIPP2023) 4-8 September 2023

Outline

- Water Cherenkov detector(WCD) and PMT
- WLS fiber enhanced PMT
- Time performance test
- WCD prototype performance test using cosmic ray
- Primary detector simulation
- Summary

WCD (Water Cherenkov detector) in LHAASO

- WCDA: cell size: 5 m* 5 m* 4m
 20" PMT + 3" PMT in pond 2/3
- Muon detector: φ6.8 m* 1.2 m
 8" PMT, time resolution < 10ns

LHAASO ED (Electromagnetic particle Detector)

WLS (Wave length shift) fiber + small PMT (XP3960)

- ✓ WLS fiber couple to scintillator (25 cm width)
- ✓ PMT TTS: ~ 1 ns
- ✓ ED time resolution: < 2ns</p>
- ✓ VME: ~20 PE

PMT + WLS Fiber to enhance the collecting effiency for water Cherenkov light

WLS Fiber enhanced PMT

- WLS Fiber
 - Saint-Gobain BCF91A: φ 1 mm, Multi-cladding
 - Saint-Gobain BCF92: improved absorptions spectrum for shorter wave length
- BCF-91A A 0.8 P 0.6 T 0.4 D 0.2 O 0.355 400 450 500 550 600 WAVELENGTH (nm)

- PMT
 - HZC XP3960: 1.5",
- Fiber bunch couple to PMT through flange
 - ✓ 50 fibers (1 m length) bounded,
 - \checkmark fiber ends polished

The Southern Wide-field Gamma-ray Observatory (SWGO)

Water Cherenkov detector consept design for SWGO

Time shift of Fiber-PMT

Performance Test of Fiber-PMT in WCD

Fig2. Reflect layer: Tyvek (1085D): reflectivity 93.5%

Fig.3 External trigger diagram

Performance Test with VEM (Vertical equivalent muon)

• Cosmic ray test result of fiber enhanced PMT in WCD

Performance Test

• tilted incidence

Performance Test

Performance Test

• Self trigger test

WCD test for PMT without WLS fiber

removed WLS fiber

Fig1. removed fiber

Fig.2 Number of PE **without** fiber. peak value: **1.6**

Fig.2 Number of PE **with** fiber. peak value: **26.1**

Primary detector simulation

• Simulation setting

Fig1. WCD structure in simulation. Fiber is a whole Fig2. Throw incident points above detector plane from top

Fig3. Simulated waveform

Primary detector simulation result

Primary detector simulation result

• Simulation result

Summary

- WLS fiber enhanced PMT was proposed to use in WCD
 - The time resolution(TTS): 7.4 ns (single photoelectron)
- The performance of Fiber-PMT test in small water tank
 - The WLS fiber improved the PMT light collection in WCD
 - Peak value of vertical equivalent muon: >20 PE
 - Time resolution: ~4.5 ns
 - Able to work and show a clear single-muon peak under self trigger mode
- Simulation
 - We developed the simulation program and obtained some primary results
 - May continue to optimize the program and study the performance of detectors in different sizes in the future

Thanks for your attention!

Backup slides

- Calculate number of photo-electrons(NPE)
- Calculate the charge of signal

1) perform an integral over the entire waveform

- 2) subtract the baseline from the waveform integral
- NPE = charge / (1.6 * 10^-19) / gain

Phi	= 2.241/9
Corex	= -0.500036
Corey	= 0.00470904
HitsÉ	= 5
HitsE.fUniqueID	= 0, 0, 0, 0, 0
HitsE.fBits	= 33554432, 33554432, 33554432, 33554432, 33554432
HitsE.id	= 0, 0, 0, 0, 0
HitsE.status	= 0, 0, 0, 0, 0
HitsE.time	= 15.6503, 21.8578, 16.9085, 37.8177, 16.9137
HitsE.pe	= 2.30795, 2.52396, 2.38154, 2.49784, 2.44836
HitsE.np	= 62, 98, 51, 147, 42
root [4]	

Simulation output data

3.2GS/s Digitizer

TIPP2023,Cape Town,Hao Sun