

Development of highly granular hadronic calorimetry with glass scintillator tiles

Dejing Du and Yong Liu (for the CEPC-Calo Team)

TIPP2023 Cape Town

Sep. 7, 2023

中國科學院為能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Yong Liu (liuyong@ihep.ac.cn)

Yuexin Wang (IHEP)

• Future electron-position colliders: e.g. CEPC

Motivations

- Main physical goals: precision measurements of Higgs/Z/W bosons
- Challenge: unprecedented jet energy resolution $\sim 30\% / \sqrt{E(GeV)}$
- CEPC detector with highly granular calorimeters (PFA-oriented)
 - Boson Mass Resolution (BMR): ~4% in the baseline design
 - Next stage goal: BMR 4%→3%
 - Dominant factors in BMR: charged hadron fragments & HCAL resolution
- New concept: glass scintillator HCAL
 - Sampling scintillator-steel HCAL (a la CALICE-AHCAL): to use glass scintillator tiles instead of plastic
 - Higher energy sampling fraction → requires high density and light yield
 - Expect better hadronic energy resolution

- CEPC 4th concept detector: PFA-oriented
 - Hadronic calorimeter (HCAL) with glass scintillator tiles
 - Requires glass scintillator with high density and light yield
 - Expect better hadronic energy resolution
- R&D activities for glass scintillator HCAL
 - HCAL design and simulation studies
 - PFA optimisation and physics performance studies
 - Key Parameter: Boson Mass Resolution (BMR)
 - Hardware developments: testing Glass scintillator tiles
 - Key parameters: MIP response, scintillation times

CEPC 4th concept detector

"SiPM-on-Tile" design for CALICE-AHCAL

Motivations

- Standalone simulation of GS-HCAL
 - Design optimisation
 - Software compensation
- Glass scintillator material R&D
 - Key parameters: density, light yield, decay time
- Beamtest of glass scintillator tiles
 - Key parameter: MIP response
- Summary

GS-HCAL simulation setup

- GS-HCAL geometry
 - Refer to Scintillator-Steel AHCAL (CEPC CDR baseline)
 - Replace plastic scintillator with glass scintillator
- Glass scintillator material
 - Composition: Gd-B-Si-Ge-F-Ce³⁺
 - Nuclear interaction length: 23.83 cm
 - MIP response: 7 MeV/cm
- GS-HCAL nominal parameters

Total number of layers	40	
Total nuclear interaction length	5 λ	
Glass tile size	40×40×10 mm ³	
Glass density	6 g/cm ³	
Readout threshold	0.1 MIP	

MC sample: pi-

- Varying glass scintillator density: 3 to 8 g/cm^3
 - Shower starting layer < 5 (to reduce leakage effects)
- Extraction of stochastic and constant terms in

energy resolution

- Increasing density can improve hadronic energy resolution
- Considering constraints of light yield in glass R&D, target density set as ~6 g/cm³

MC sample: pi-

- Varying glass scintillator thickness: 5 to 15 mm
 - Shower starting layer < 5 (to reduce leakage effects)
- Extraction of stochastic and constant terms in energy resolution

- The hadronic energy resolution can be improved with thicker glass tiles, especially the stochastic term
- Glass thickness of 10 mm will be chosen for current design

- Further improvements to hadronic energy resolution
 - Hadronic showers: EM core (compact) + purely hadronic component (sparse)
 - Software compensation: determine weights based on energy density for EM/hadronic parts

- ScintGlass HCAL option
 - Unequal response to EM/had. (e/h>1)
- Preliminary simulation studies
 - Software compensation shows a significant improvement in energy resolution

SC techniques applied in H1, ATLAS, CALICE-AHCAL, CMS-HGCAL; PandoraPFA

Sus Scitter/Jacon Callaboration Officerstation

Peng Hu (IHEP)

- Adapted from CEPC baseline detector
 - ScintGlass-Steel HCAL + Si-W ECAL
- Higgs benchmark with two gluon jets (at 240 GeV)
- Physics performance evaluation
 - Boson Mass Resolution (BMR): resolution of the Higgs invariant mass
 - Full simulation + PFA reconstruction by Arbor

Total number of layers	40
Total nuclear interaction length	6 λ
Glass density	6 g/cm ³
Energy threshold	0.1 MIP

BMR vs. transverse granularity

- BMR improved with finer transverse granularity
 - Granularity of ~10x10mm: pattern recognition issue with dramatically more #hits
- Optimal BMR has reached 3.4%
 - Can be further improved by optimization of PFA parameters (goal: BMR ~3%)

Summary: Glass Scintillator R&D

- Targets
 - 6 g/cm³, 2000 ph/MeV, 100 ns
- Best glass sample in mm scale
 - 5.9 g/cm³, 1058 ph/MeV, 352 ns
- Challenges
 - Increase density while keeping high light yield and transparency
 - Synthesizing large cm-scale glass tiles with good scintillation and optical properties

Glass Scintillator R&D

Scintillato-

#1

- Over 400 samples of glass scintillator produced in the past year
- Different colored boxes correspond to samples from different institutes in collaboration

Scintillator

#3

Gd-Al-B-Si-Ce³⁺ glass

42mm*51mm*10mm

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2

Introduction: CERN beam test

- 11 scintillator glass tiles successfully delivered from IHEP to CERN in May 2023
 - Parasitic runs with CALICE-CEPC calorimeter prototypes
- Motivation: use muon beam to measure MIP response of each glass tile

Glass tiles wrapped with Teflon and black tapes

Two glass tiles re-wrapped with ESR

Glass tiles (cm-scale) before wrapping

- Beam test setup
 - 4 tiles with individual SiPM readout
 - 3 glass tiles and 1 plastic tile (reference)
 - Data acquisition using a 4-ch fast oscilloscope (5GS/s)
- Data sets with 10 GeV muons

DESY Table: remote control for vertical/horizontal movements of crystal module and glass tiles

Move IN/OUT of beamline: coordination with testing of CEPC calorimeter prototypes

Glass tiles with muon beam

- Use 10 GeV muons to test 11 glass tiles and a plastic scintillator tile (reference)
- Glass scintillator: performance target (reminder)
 - ~150 p.e./MIP for large-scale glass tiles (3-4cm in length, 1cm in thickness)

07.09.23

07.09.23

Preliminary beamtest results

- Observed clear MIP signals in all 11 glass samples
 - Various glass tile dimensions: 25-40 mm in length, 5-10mm in thickness
- Preliminary results quite promising
 - Typical MIP response: 15 74 p.e./MIP

07.09.23

- Muon energy spectrum: MIP response
 - Fitting by Landau (energy deposition) convoluted with Gaussian (resolution)
- Energy deposition MPVs: 66 p.e./MIP (#3); 73 p.e/MIP (#11)
- Energy resolutions: 14.2% @7.7 MeV (#3); 12.2% @6.7 MeV (#11)

Collaboration Collaboration 网络玻璃合作组

- Observed clear MIP signals in all 11 glass samples
- Muon beam results look promising
- Observed (unexpected) structures in energy spectrum
 - (Partially) due to incidence of two muons

Summary: beamtest results of 11 glass tiles

Index	Dimensions (mm)	Muon response (p.e./MIP)	Scale to 10mm thickness (p.e/MIP)
#1	33.5×27.6×5.1	15	29
#1 ESR		42	82
#2	30.2×29.5×6.6	35	53
#3	29.9×28.1×10.2	66	65
#3 ESR		69	68
#4	37.2×35.1×5.3	31	59
#5	40.0×35.1×4.2	38	91
#6	30.3×29.8×9.4	67	71
#7	34.8×34.8×7.5	60	80
#8	27.8×25.6×5.0	41	82
#9	34.6×34.7×7.5	69	92
#10	34.7×35.2×7.4	74	100
#11	30.5×30.0×8.7	73	84

Acknowledgements

- Strong teamwork and team's hardworking spirit in day and night
- Enormous and substantial support from CERN and CALICE

Very successful beam test campaigns:

A big Thank You to CALICE and CEPC calorimeter teams

Simulation studies

- Guidance for glass R&D and HCAL design
- Single hadrons: hadronic energy resolution
- Higgs benchmark with jets: BMR optimization
- CERN beamtest in May 2023
 - Full muon data sets for all 11 scintillator glass tiles
 - Evaluation of key parameters
 - MIP response, energy resolution
 - Preliminary results promising
- Prospects
 - Design optimization for optimal performance
 - R&D of new batches of large-scale glass tiles

Backup

Yong Liu (liuyong@ihep.ac.cn)

Digitization in simulation

Preliminary result of digitization

MC sample: pi-

- Influence of digitization on energy response
 - Energy threshold = 0.1 MIP
 - Shower starting layer < 5 (to reduce energy leakage effects)
- Digitalization has little effect on energy resolution
- To further complete digitization method
 - Single photon and MIP calibration should be measured with the chip
 - Differences between channels

CERN PS and T9 beamline

- CERN Proton Synchrotron (PS): primary 24GeV protons
- Secondary beam particles at PS-T09
 - Muons and charged hadrons: up to 15 GeV/c
 - Electrons: up to 5 GeV/c

MIP energy deposition vs muon energy: Geant4 simulation

Guster Scintillang, Guster Scinter (Japanese) Galabaration 网络玻璃合作组 Gas Statimer Channese

MIP

Typical waveforms with muons

MIP response: plastic scintillator

