

The Water Cherenkov Detector of JUNO

Haoqi Lu Institute of High Energy physics, CAS, China (On Behalf of the JUNO Collaboration) TIPP2023, Sep.04-08

List of members

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China	UCAS	Italy	INFN Catania
Brazil	UEL	China	USTC	Italy	INFN di Frascati
Chile	PCUC	China	U. of South China	Italy	INFN-Ferrara
Chile	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China	Xiamen University	Italy	INFN-Perugia
China	CAGS	China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China	NUDT	Pakistan	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Warwick
China	Shandong U.	Germany	TUM	USA	UMD-G
China	Shanghai JT U.	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Beijing	Germany	FZJ-IKP		

Detector overview

Central detector:

- Acrylic vessel with liquid scintillator
- 17612 large PMTs (20-inch)
- 25600 small PMTs (3-inch)
- $\sim 78\%$ PMT coverage
- PMTs in water buffer
- Water Cherenkov Detector (veto):
 - 2400 20-inch PMTs
 - 35 ktons ultra-pure water
- Compensation coils:
 - Resident earth magnetic field <0.05Gs
 - Necessary for 20" PMTs

Top Tracker (veto):

- 3 plastic scintillator layers
- Covering half of the top of the water pool
- Precision muon tracking

Challenging detector

- Detector requirement
 - Large statistics
 - Large target mass;
 - Powerful nuclear power plants (NPPs)
 - Very good energy resolution
 - Very high PMT coverage + High transparency of LS+ High PMT efficiency
 - Cosmic muon induced background reduction
 - ~650 m rock overburden+ Veto system with >99.5% efficiency
 - Radioactivity background(reactor neutrinos, solar neutrinos)
 - Material background control + Installation procedure & clean environment control

Precise reference spectra of NPPs

Satellite detector → JUNO-TAO

Experiment	Daya Bay	Borexino	KamLAND	JUNO
Target mass [tons]	8 x 20	~300	~1,000	20,000
Photo electron[p.e./MeV]	~160	~500	~250	>1345
Energy resolution	~8.5%	~5%	~6%	~3%
Photocathode coverage	12%	34%	34%	~78%
Energy calibration uncertainty	0.5%	1%	2%	<1%

JUNO physics

Research	Expected signal	Energy region	Major backgrounds
Reactor antineutrino	60 IBDs/day	0-12 MeV	Radioactivity, cosmic muon
Supernova burst	5000 IBDs at 10 kpc $$	$0-80 {\rm ~MeV}$	Negligible
	2300 elastic scattering		
DSNB (w/o PSD)	2–4 IBDs/year	$1040~\mathrm{MeV}$	Atmospheric ν
Solar neutrino	hundreds per year for ⁸ B	$0-16 {\rm ~MeV}$	Radioactivity
Atmospheric neutrino	hundreds per year	$0.1{-}100~{\rm GeV}$	Negligible
Geoneutrino	$\sim 400~{\rm per}$ year	$0-3 { m MeV}$	Reactor ν

<u>J. Phys. G 43 (2016) no.3, 030401</u> Part. Nucl. Phys. 123 (2022), 103927

 $\nu + p \rightarrow n + e^+$ E_v>1.8 MeV

Cosmogenic background

- Cosmic muons
 - ~650m rock overburden(1800 m.w.e);
- Muon related background
 - ⁹Li/⁸He unstable isotopes produced by muon spallation on ¹²C and decay beta-neutron;
 - ~127 ⁹Li+40 ⁸He isotope/day(IBD signal ~60/day);
 - Untagged muon induced fast neutron background.
 - Reduce the background to low level:
 - Good veto detector are required;
 - With current veto strategy, muon induced background
 - ⁹Li+ ⁸He ->0.8/day;
 - Fast neutron->0.1/day

Digitalized mountain profile of JUNO site

 R_{μ} = 4 Hz in LS, < E_{μ} > = 207 GeV

Background	Rate (day^{-1})
Geoneutrinos	1.2
World reactors	1.0
Accidentals	0.8
⁹ Li/ ⁸ He	0.8
Atmospheric neutrinos	0.16
Fast neutrons	0.1
$^{13}C(\alpha,n)^{16}O$	0.05

The veto system

Two veto detectors for cosmic muon detection and background reduction.

- Water Cherenkov Veto:
 - Muon event tagging.
 - Outer of the detector;
 - 35 kton ultrapure water as medium;
 - Fast neutrons background rejection
 - Muon tagging+ passive shielding;
 - Radioactivity from rock
 - Passive shielding by water
- Top tracker:
 - On top of water pool, cover ½ of pool;
 - A precise muon track reconstruction;
 - Cosmogenic muon induced isotopes reduction (⁹Li/⁸He and other isotopes).

Water veto sub-systems/components

Sub-systems/components

- PMTs:2400 20 inch PMTs
- EMF coils: shielding the detector to ensure the 20 inch PMT performance
- Water system: 100ton/h water system
- **Pool lining**: covering the pool wall as Rn barrier
- Tyvek reflector: increase light collection for PMT
- Cover: gas tight cover for the detector
- Support structure

PMTs

- Three types of PMTs used in JUNO
 - Central detector
 - 17612 large PMTs (20-inch)
 - 12612 MCP-PMTs from NNVT
 - 5000 dynode PMTs from Hamamatsu
 - 25600 small PMTs (3-inch) from HZC
 - Water veto
 - 2400 MCP-PMTs from NNVT

20012 20-inch PMTs (17612 CD + 2400 veto)

Acrylic cover

SS cover

- All PMTs are produced, tested;
- ~1/3 of PMTs are transported on site for detector installation.

PMT placement in water veto

- 2400 20 inch MCP-PMT used for veto system;
 - PMTs put on the surface of the sphere and facing outside;
- Original design had some PMTs in wall/floor pointing inwards;
 - In this case, PMTs facing muon exiting CD in lower part of detector
 - Positions are too close to the compensation coils/outside the coils;
 - The PMT will be affected by the magnetic field by the coils/EMF;
- Move PMTs on the sphere of the stainless frame to get better performance.
- Trigger & efficiency
 - Divide the detector into 10 pieces for local trigger;
 - Detector efficiency is expected to reach 99.5%.
- Fast neutron background
 - With the high muon tagging efficiency, the fast neutron background is anticipated to be <0.1/day.

Veto PMT/electronics installation

Veto module structure

Install PMT/electronics box

Veto module assemble

Lifting

~500 veto PMTs installed (~20% of PMT) ;

Module fixation

Compensation coils system

- Earth Magnetic Field(EMF) intensity at JUNO site
 - Intensity ~0.45Gs
 - Big negative effect on the 20 inch PMT performance;
 - Need a shielding system for compensation EMF.

- Use one set of coils to generate the opposite direction of the geomagnetic field to compensate it.
 - 32 coils scheme;
 - Coils's uniformity in CD<0.05G.
- EMF direction change effect
 - The EMF direction change every year(<0.2deg/y).
 - Set a compensation angle when the coils are installed.
 - Make the angle change < 1 degree within 10 years.

Compensation coils installation

Coils fixation and spool placement

Pool lining

- High Density Polyethylene (HDPE)
 - To separate pure water from the rock
 - To prevent rock radon from diffusing into the pool.
 - Two kinds of HDPE plate, with and without nails.
 - Thickness 5 mm.
 - The side wall lining installation was finished.

- Dimension:43.5 m diameter*44m height;
- >6000 m² lining.

Tyvek reflector

Tyvek reflection film

To be installed on

- Surface of the SS latticed shell;
- Pool wall, bottom and top;
- Cover the whole inner surface of the pool to improve light collection.
- Tyvek reflector production finished.
- Tyvek installation started.

Tyevk Reflectivity

Reflectivity larger than 95% for wavelengths > 300nm

Tyvek

Welding

Installation

The ultrapure water production and circulation system

Water system

- Keep water quality with good transparency for detector performance
- Flow rate: ~100 t/hour
- Ground system:
 - Water production
- Underground system:
 - Purification and circulation;
- Connection ground and underground system by 1300 m stainless steel pipe in slope tunnel;

Water system status

Water system(Ground)

Water system(Underground)

- Status:
 - Both ground and underground system installation are finished.
 - Ready for tunning and commissioning.

Detector temperature control

- Keep temperature control within (21±1)°C around the acrylic vessel
 - Important for acrylic safety;
 - Keep the detector's mechanical stability.
- A lot of studies and optimizations were done to achieve this goal.
- The circulation schema:
 - Top and bottom of the pool have inlet pipes;
 - Outlet pipes at the equator of the detector;
 - Top and bottom pipes have distributors to make the circulation more uniform;
 - The temperature distribution around the acrylic vessel is anticipated: 20°C< T <22°C.

Water inlet

Radon removal in water

- Water buffer between the central detector acrylic vessel and PMTs.
 - Requirement for radon concentration in water<10 mBq/m³
- Liquid-cel degassing membrane is used to remove radon from water.
- Micro-bubble device used
 - The Rn removal efficiency is correlated with the gas content in water;
 - Generate bubbles at a scale of nm/µm to greatly increase the gas content in water;
 - Installed after the first stage of degasser to load gas into the water.
- Micro-bubble device + degassing membrane
 - The radon concentration in water was reduced to ~5mBq/m³;
 - These devices will be combined into water system.

Summary

- JUNO will measure neutrino mass ordering(3 σ with 6 years data taking) and three oscillation parameters to <1% level.
- JUNO also has a rich physics potential with supernova neutrinos, geo-neutrinos, solar neutrinos, atmospheric neutrinos and other oscillation physics such as searches for proton decay, etc.
- JUNO water Cherenkov detector is designed for muon detection and background reduction.
 - The detector assembly/installation is progressing smoothly.
 - Plan to finish the detector installation and starting filling next year.

Thanks!