Long-term Performance Studies of Resistive Plate Chambers with Environmentally Friendly HFO/CO2 Gas Mixtures at the GIF++ Facility

Gianluca Rigoletti on behalf of the RPC ECOGAS @ GIF++ collaboration

02/09/2023

Outline

RPCs at LHC

 \circ GHGs consumption

Alternative gases to R-134a

• R-1234ze as alternative to R-134a

Short and long term studies on HFO-based gas mixtures

• Muon beam + Gamma background tests

Conclusions

Greenhouse gases consumption

³

RPC gas mixtures at LHC

- HPL RPCs: ATLAS, CMS, ALICE
- Gas mixture made of 3 components: R-134a,
 i-C4H10, SF6 + ~40% RH (for electrode resistivity)
- >90% of the GWP due to R-134a
- ~5-7% due to SF6

RPCs accounts for ~ **85%** of GHG emissions from particles detectors at **CERN**:

- Leaks at detector level → reparation campaign
- Gas mixture replacement → **environmental** and possibly **economical**

Studies on eco-friendly gas mixtures

Motivations

- **Several works** done by different universities and institutions
- Up to now **no eco-gas mixture found** to fulfill requirements for RPC at LHC
- Research on new eco-gases fundamental for LHC and for future applications

CERN Gas Group lab.

Torino Laboratory

INFN Frascati lab.

Rome Tor Vergata Lab

RPC ECOGAS @ **GIF++** Collaboration

Joint effort among different groups and institutes CMS-RPC, ATLAS-RPC, EP-DT, ALICE-MID, LHCb/SHiP Started in 2019

RPC Detectors

- High Pressure Laminate: single gap, double gap,
 1, 1.4, 2 mm gas gaps with different thicknesses
- Common infrastructure: shared DCS, Gas System and mechanical support

Studies in the AIDA Innova Task WP 7.2.3

- Validation of suitable eco-friendly gas mixture for RPC operation under gamma irradiation
- Long term performance studies on RPC detectors operated under gamma irradiation
- Detector performance with muon beam and gamma background
- F-based impurities production measurements

Goal: characterization of HFO-based gas mixtures with LHC-like background radiation

Experimental Setup

Gamma Irradiation Facility

- Bunker area with a ¹³⁷Cs source of ~12.5 TBq
- Located at the CERN North Area, on the H4 line
- A muon beam of 100 GeV/c present
- Gamma flux can be regulated using a set of lead filters (ABS)

Experimental setup

- One common Gas System: Small replica of LHC gas systems, operated in open mode
- HV and electronics: dedicated power supply and readout electronics for each detector
- Mechanical installations: 2 trolleys at different distances from the gamma source

Activities of the ECOGAS collaboration

Detector Technologies

8

Short term performance: test beam campaign

Detector performance with muon beam

- Working point with ECO-gas mixtures is higher:
 - \circ $$ +250 V with ECO3
 - \circ +1000 V with ECO2
- Max. efficiency ~ 98-99% for 2 mm gaps → good trigger properties
 - No significant changes in cluster size and time resolution \rightarrow good space and timing properties compared to std. gas mixture

_

Short term performance: test beam campaign

Higher background currents with respect to Standard Gas Mixture

- ~ 50% with ECO2
- ~ 100% with ECO3

Higher concentration of CO2 \rightarrow higher charge content at w.p.

Tests with thinner gaps

Tests performed on gas gaps of 1 mm from ATLAS for BIS upgrades and CMS

Higher content of CO2 decreases the maximum efficiency plateau

Long term tests: irradiation campaign

Long term irradiation tests

- Detector continuously flushed at ~ 1 vol/h -
- Detectors continuously irradiated @ GIF++ -
- Weekly voltage/current scans at source off to assess detector performances

50-100 mC/cm2 integrated

EP-DT

- Constant ohmic behaviour for most of detectors
- General increase of currents @ w.p. -

ALICE - 2 mm single gap

12

Ship - 1.6 mm single gap

Long term tests: resistivity measurements

Resistivity measured with Argon

- Measurements performed regularly over irradiation campaign
- Values normalized over temperature of 20 °C
- Stable resistivity for EPDT and ALICE detectors
- Increasing behaviour in ATLAS and ALICE chambers

Conclusions

ECO-gases for RPC applications

- Low GWP gas mixtures advisable for environmental reasons and for economical/market ones
- **RPC ECOGAS** @ **GIF** ++ collaboration → joint effort between CERN EP-DT, ALICE, ATLAS, CMS, LHCb/SHiP

Tests on HFO-based gas mixtures

- Initial tests performed on **HFO/CO2**/i-C4H10/SF6 gas mixture
- Tests on different HFO/CO2 gas mixtures: ECO1, ECO2, ECO3
 - ECO1 (45% HFO) \rightarrow high currents, performance unstable \rightarrow discarded
 - ECO2 (35% HFO) → higher working point but stable performance → selected for long-term tests
 - ECO3 (25% HFO) → lower working point but decreased efficiency plateau
- Test beam campaign performed on 2021, 2022 and 2023 ongoing
 - Similar performances observed among chambers from different experiments
 - **ECO2** and **ECO3** have **higher currents** but good time resolution and cluster size
- Long term irradiation campaign
 - Irradiation at GIF++ with 137 Cs source
 - 50-100 mC/cm2 integrated
 - Stable currents at low voltage, increasing @ working point → under investigation

