Transient Studies using a TCAD and Allpix Squared combination approach

Manuel Alejandro Del Rio Viera on behalf of the Tangerine Project

Technology and Instrumentation in Particle Physics

September 7th 2023

DESY. | TIPP | Manuel Alejandro Del Rio Viera, September 7th 2023

Development cycle of a detector

- The development of a detector involves planning ٠ and performing many different phases.
- Each phase may take several ٠ iterations until a final version of the planned detector is achieved.

Simplified development cycle of a detector

R&D Cycle

- This is especially true during the Research and Development Cycle.
- Each prototype iteration increments the cost due to production cycles and extensive testing.

Simplified development cycle of a detector. Focusing on the research and development phase

The advantages of simulations

•

•

٠

٠

Tools that we use in simulations

Technology Computer-Aided Deisgn **SYNOPSYS**[®] Silicon to Software

- Model semiconductor devices using finite element methods
- Calculate highly accurate electric fields, potentials and doping concentration

Example electric field in TCAD

simulation framework for semiconductor detectors

- High statistics Monte Carlo simulations of ٠ semiconductor detectors
- Full detector simulation chain, from energy ٠ deposition and charge carrier propagation to signal digitization
- Integration with GEANT4 and TCAD. ٠

Page 5

Electric field in planar sensors

- After an ionization event, the charge carriers will drift following the **electric field** lines towards the collection electrode.
- A **simple** and **mostly linear** electric field is able to represent adequately planar sensors.

Electric field lines of a 300 µm planar sensor

Electric field in thin silicon sensors

- However, the electric field becomes specially **complicated** in thin sensors.
- Having an **accurate** electric field assures more **precise simulations** that would be able to represent our sensors.

Electric field lines of a 10 µm sensor and a small collection electrode

The Tangerine Project TowArds Next GEneRation SilicoN DEtectors As example of the use of TCAD + Monte Carlo Simulations

Goal: Develop the next generation of monolithic silicon pixel detectors using a 65 nm CMOS imaging process

We investigate the potential for the following applications:

Trackers for future e+e- Colliders

Reference detector at DESY-II test beam upgrade ٠

Requirements

- Spatial Resolution ~ 3 µm
- Time Resolution ~ 1 -10 ns
- Low material budget \sim 50 µm silicon (compared to hybrid sensors)

MIMOSA Telescope at the DESY II Facility

Electric field in thin silicon sensors

Monolithic Active Pixel Sensors

(MAPS)

Static Monte Carlo Simulations of thin silicon sensors

- The static Electric Field and Doping Concentration are converted and imported into Allpix Squared:
 - → Combining the best of both: High statistics and accurate field modeling

Validation with Test Beam data

- "Analog Pixel Test Structure" (<u>APTS</u>) provided and designed by CERN ALICE
- DAQ and chipboard designed and developed together with **CERN EP R&D**
- Test beams have been carried out at **DESY**, and first comparisons made to simulations
- Results from the APTS
 - N-gap layout
 - 25x25 µm² pixel size
 - 4x4 pixel matrix
 - 4.8 V bias voltage
- The trend between simulations and data matches well

Motivation: We would like to also study the time evolution response of our sensors, i.e. the signal

Transient Simulations

• Transient simulations allow us to study the **time evolution** of the response of a sensor, i.e. the **signal** evolution which is exactly what we want to achieve for our sensors.

• By adding a **Weighting Potential** we can calculate the Induced signal (charge or current) in our sensor.

Weighting Field: Shockley-Ramo Theorem

Basic Principle of Induced Signal in an electrode

• After an ionization event, the charge carriers will drift following the **electric field** lines towards the collection electrode.

- This will induce a current (**signal**) as the charge carriers move.
- The induced current can be expressed by the propagation of the charge in the weighting field :

$$I_{ind} = qE_w v$$

• The weighting field E_w describes the **electromagnetic coupling of a charge** to an arrangement of conducting electrodes.

Weighting Potential: Shockley-Ramo Theorem

Basic Principle of Induced Signal in an electrode

• Often easier to use, the weighting potential φ appears as a solution to the Laplace equation:

Example of Weighting Potential. Higher values are closer to the collection electrode

TCAD Simulations

Two extreme cases under study

- Charge carriers injected alongside the pixel corner or center
- Fixed amount of charge carriers 63 eh/µm
- Average of pixels over threshold calculated (One for center and four for the corner)

1

0

Anastasiia Velyka

TCAD

DESY. | TIPP | Manuel Alejandro Del Rio Viera , September 7th 2023

•

TCAD Simulations

Two extreme cases under study

- Charge carriers injected alongside the pixel **corner** or **center** ٠
- Fixed amount of charge carriers 63 eh/µm
- Average of pixels over threshold calculated (One for center and four for the corner)

1

Validating TCAD + APSQ

With TCAD

Motivation of TCAD+APSQ

High statistics and Geant4 enable the inclusion of Landau fluctuations, which offers a **more realistic simulation** scenario

But first we have to validate it!

To validate TCAD+APSQ simulations, same simulation conditions as in transient TCAD are replicated:

- Fixed amount of charge carriers: 63 eh/µm
- Only the epitaxial layer is simulated: **10 µm**
- Monte Carlo simulation repeated <u>10000x</u> times and the average pulse is calculated

Validation – Corner Injection

Average Pulse Comparison

- Same pulse shape, meaning that both undergo the **same physic processes**
- Good agreement between both approaches
- Similar values of collected charge (obtained by integration)

APSQ + TCAD – Average 10000 pulses Pure TCAD – 1 pulse

Validation – Corner Injection

Average Pulse Comparison

- Same pulse shape, meaning that both undergo the **same physic processes**
- Good agreement between both approaches
- Similar values of collected charge (obtained by integration)

APSQ + TCAD – Average 10000 pulses Pure TCAD – 1 pulse

Validation – <u>Different Layouts</u>

Average Pulse Comparison

- Same pulse shape, meaning that both undergo the **same physic processes**
- Good agreement between both approaches

APSQ + TCAD – Average 10000 pulses Pure TCAD – 1 pulse

- Same pulse shape, meaning that both undergo the same physic processes
- Good agreement between both approaches

Simulation with Minimum Ionizing Particles – Beam at the center

- We can proceed by shooting MIP particles and thus take into account Landau fluctuations, secondary particle production, Photo Absorbtion lonization...
- Not only that but also include contributions from the substrate and investigate this further by shooting in different positions of the pixel...

Simulation with Minimum Ionizing Particles – Beam at the center

- We can proceed by shooting MIP particles and thus take into account
 Landau fluctuations, secondary particle production, Photo Absorbtion lonization...
- Not only that but also include contributions from the substrate and investigate this further by shooting in different positions of the pixel...

Induced current per pixel 1.8 ^{×10⁻⁶} 25 20 1.4 1.2 15 0.8 10 0.6 0.4 5 0.2 10 15 20 5 time [ns] Induced signal due to a 5 GeV electron beam Stochastic effects are visible TCAD 63 eh/µm in black for comparison

Simulation with Minimum Ionizing Particles – <u>Beam at various</u> incident positions

- Fluctuations between both locations are distinguishable. Center pulses reaching ^{_}³
 their peak faster compared to corner ones.
- **Higher average charge collection** from particles hitting the center is expected.
- In the plot a **high energy deposition** event for each incident position are also observed.

Comparison between pulses in center and corner of the pixel

Average Charge Collection

- After the track reconstruction using Corryvreckan, each trigger event is assigned a waveform.
- From the waveforms we can obtain information such as the rise time and associate it to a track position.

Summary and outlook

Summary

- An APSQ+TCAD approach has been **validated** with pure TCAD simulations.
- This offers the possibility to perform **realistic** simulations.
- We performed a test beam to obtain data to compare with our Transient Simulation studies.

Outlook

- Implementation of **electronic output** in Allpix Squared.
- Feed simulation pulses in Circuit simulations.
- Analysis of the test beam data to obtain parameters to compare to our simulations.
- A preliminary validation of the simulation with data.

Thank you for your time

HELMHOLTZ

Contact

Manuel Alejandro Del Rio Viera manuel.del.rio.viera@desy.de

Back up

Weighting Field: Shockley-Ramo Theorem

Basic Principle of Induced Signal in an electrode

See academic training lecture by W. Riegler (https://indico.cern.ch/event/843083/)

For a static electric field, the energy: $W_E = W_{E_0} + W_{E_q}$ No change in total field energy when charge is moving: $0 = dW_{E_0} + dW_{E_q} = UdQ + q\vec{E_0} \cdot d\vec{r} \rightarrow dQ = -q\frac{\vec{E_0}}{U} \cdot d\vec{r}$ Solved by a weighting field and a weighting potential: $\varphi_w = \frac{\varphi_0}{U}$; $\vec{E_w} = -\vec{\nabla}\varphi_w$ The induced current can be expressed by the propagation of the charge in the weighting field : $Q_{ind} = q(\varphi_w(\vec{r}_{t_0}) - \varphi_w(\vec{r}_t))$

Weighting Potential How to obtain it?

- 1. Simulate **Electrostatic Potential** with TCAD at the collection electrode for two slightly different voltages
- 2. Subtract the two electrostatic potentials at every mesh point
- 3. Divide by the collection electrode voltage difference

Monolithic Active Pixel Sensors (MAPS)

in a 65 nm CMOS technology

Second sensor under study

Multi-Layer Reticle 1 (MLR1) production

TowArds Next GEneRation SilicoN DEtectors

Analogue Pixel Test Structures (APTS)

DESY MLR1:

- Entirely developed at DESY
- Test structures for Charge Sensitive Amplifier (CSA) characterization developed at DESY
- Block of 2x2 16 µm pixels with an analogue readout for pixel characterization

Analogue Pixel Test Structures (APTS):

- Designed at CERN (DESY involved in the lab and TB characterization)
- 4x4 pixels structure with analogue output
- Different sensor pitches and layouts

Page 38

Timeline and next to come

From MLR1 to ER1

- 8-bit counter per pixel
- 4 acquisition modes (ToA, ToT, counting, binary RO)

Validation with TCAD

Various Pitches Preliminar Standard Total Current Corner 63eh/µm ×10⁻⁹ Ind [A] APSQ + TCAD 3.5 Pure TCAD 3 2.5 2 15x15um² 1.5 0.5 0 10 15 20 25 30 35 40 5 time [ns] Preliminar Standard Total Current Center 63eh/µm 1.2 ×10⁻⁶ Ind [A] APSQ + TCAD Pure TCAD **25x25um**² 0.8 0.6

Standard

1.5

N-Gap N-Gap Total Current Corner 63eh/µm

Preliminar

0.5

0.4

0.2

0 🗄

0