Energy response function and calibration of the FOOT calorimeter

Istituto Nazionale di Fisica Nucleare

Alessandro Valetti on behalf of the FOOT collaboration

Particle Therapy

- Particle therapy is performed with p or C ions
- The Bragg peak is very effective in minimizing the dose delivered to healthy tissues

Secondary fragments are created in the interaction between treatment beams and tissues

Nuclear Fragmentation

Target Fragmentation:

- Target fragments are produced with low energies (short range, hundreds of μm)
- Difficult to detect

Beam Fragmentation:

- Projectile fragments (longer range)
- Non-zero dose beyond the Bragg peak to address
- ✓ Not present in protontherapy

Spacecraft Shielding

- Charged particles in space: Solar Particles Events (SPEs), Galactic Cosmic Rays (GCRs), geomagnetically trapped particles
- ✓ Interaction with walls/shielding of spacecraft produce secondary fragments

Δ

FragmentatiOn Of Target: FOOT

- ✓ Aim: measurement of beam and target fragmentation cross sections with 5% accuracy
- ✓ Experiment design to perform charge and mass identification at 2-3% and 5% accuracy
- ✓ Inverse kinematics approaches
- ✓ ⁴He, ¹²C, ¹⁶O beams of 200-400 MeV/u on ¹²C, C_2H_4 and $C_5O_2H_8$ targets (Hadronterapy)
- ✓ ⁴He, ¹²C, ¹⁶O beams of 800 MeV/u on ¹²C, C_2H_4 and $C_5O_2H_8$ targets (Radioprotection)

FOOT is a collaboration with about 100 members coming from

- INFN: 10 sections
- 3 laboratories: CNAO, GSI, IPHC
- 15 universities: France, Italy, Japan, Germany

Emulsion Setup

- ✓ Designed for light fragments (Z ≤ 3)
- Large angular acceptance (70°)
- Emulsions must be developed after irradiation
- Isotope identification

Electronic Setup

- Large variety of detectors
- ✓ Designed for heavier fragments
 (3 ≤ Z ≤ 8)
- ✓ Angular acceptance of 10°
- ✓ Will be completed by the end of 2023

DOWNSTREAM REGION

7

Mass Reconstuction

TOF (β) – TRACKER (p) $A_1 = \frac{m}{u} = \frac{p\sqrt{1-\beta^2}}{u\beta}$

Fluka simulation ¹⁶O (200 MeV/u) + C_2H_4

FOOT Collaboration A. Valetti

8

Calorimeter

- 320 BGO crystals grouped in modules (9 crystals for each module)
- Crystals dimension: 2x2 cm2 (front)
 3x3 cm2 (back) 24 cm (lenght)
- ✓ SiPM based readout
- 31/37 modules fully assembled (glueing completed)
- Measurement of the kinetic energy

Two different data acquisition campaigns for calibration and equalisation:

- Heidelberg Ion Therapy center (HIT) in July 2022
- CNAO in November 2022

HIT Setup

- Simple setup with just one fully assembled module
- ✓ Beam focused on central crystal
- No other detector between Calorimeter and beam nozzle (autotrigger)
- Energy scan from 50 to 400 MeV/u with proton, Helium, Carbon and Oxygen ions

Calibrated crystal resolution per different ions

Energy Calibration Curves

 The calorimeter linearity is affected by the Birks effect

 $\frac{dS}{dx} = \frac{A \cdot dE/dx}{1 + k \cdot B \cdot dE/dx}$

- ✓ There is clear dependence on Z
- The chosen fit function is a modified Birks function with three free parameter

$$ADC(E) = \frac{p_0 x^2}{1 + p_1 x + p_2 x^2}$$

✓ Good fitting of experimental data

$$\frac{|E_{fit} - E_{ADC}|}{E_{fit}} < 1\%$$

Atomic Number Dependance

Is it possible to adress the Z dependence problem?

$$ADC(E) = \frac{p_0 x^2}{1 + p_1 x + p_2 x^2}$$

Ratio of energy calibration curve parameters to proton curve parameters follow an exponential law \rightarrow By measuring Z we can equalize the ADC response for different particle

Energy Equalization

It is now possible to measure the kinetic energy by knowing the charge of the ion (TW)

CNAO Setup

- Setup with twelve fully assembled modules
- ✓ TofWall on beam line
- Beam in "Screensaver Mode": sweeping 72 crystal during each run in about 15 minutes
- Scan at three different energies 115, 200, 300 MeV/u with Carbon ions

Two different strategies have been used in order to equalize crystal response, both using the modified Birks function

$$ADC(E) = \frac{p_0 x^2}{1 + p_1 x + p_2 x^2}$$

Equalization with a single multiplying factor

Equalization done by calculate energy response curve for each crystal

Single Factor

15

Response Curves

Method Comparison

Conclusions

- ✓ Energy Calibration is under control: particle equalization leads to a < 1% residual distribution
- Fast Equalization strategy founded: worst case scenario still meets experimental requirement resolution < 2%

Timeline: first data taking with the full detector @ CNAO in 2023

18