Innovative hybrid photodetector based on the Timepix4 ASIC as pixelated anode

- J. Alozy¹
- R. Ballabriga¹
- N.V. Biesuz²
- R. Bolzonella ^{2,3}
- M. Campbell¹
- V. Cavallini ^{2,3}
- A. Cotta Ramusino²
- M. Fiorini ^{2,3}
- E. Franzoso²
- X. Llopart Cudie ¹
- G. Romolini ^{2,3}
- A. Saputi²

- 1. CERN
- 2. INFN
- 3. University of Ferrara

TIPP conference - Cape Town, 4th-8th September 2023

Overview

- Project goal
- The hybrid detector operating principle
- The Timepix4 ASIC
- DAQ and software
- Timepix4 characterization
 - Time-over-Threshold calibration
 - Timing resolution
- Conclusions

Novel hybrid photon detector

Project goal: development of a new photodetector with **large active area** able to measure **single photons** with **simultaneous excellent timing and spatial resolution**, with a **low noise level at room temperature**

- "Hybrid" assembly: many components inside a tube kept in under high vacuum
- Photocathode deposited in the inner part of a transparent input window
- MCP stack (Chevron configuration)
- Pixelated CMOS anode: Timepix4 ASIC

Ceramic carrier board

- interface between inner/outer parts of the detector
- custom Pin Grid Array for I/O signals including high speed connections
- Heat sink (ASIC power 5 W)
- PCBs to connect the detector to a FPGA-based DAQ system

Detector operating principle: photocatode

Photon conversion producing a photo-electron in a high Quantum Efficiency (QE) photocatode

- high QE in blue-green region (for Cherenkov photons)
- \succ low dark count rate (10²-10³ Hz/cm² @300K)
- ➤ large active area

Flexible design to use different photocatodes if needed for various applications

Detector operating principle: microchannel plate

Photon conversion producing a photo-electron in a high Quantum Efficiency (QE) photocatode

The photo-electron is transported by a drift electric field onto a microchannel plate (MCP) in Chevron configuration

- pore spacing of 5-10 μm to improve spatial and timing resolution, and hit rate
- short photocathode-to-MCP distance to improve spatial and timing resolution
- MCP-to-anode distance tuned for optimized spatial and timing resolution
- possible options to increase lifetime:
 - MCP operated at low gain (10^4 - 10^5)
 - Atomic Layer Deposition (ALD)

Detector operating principle: pixelated anode

Photon conversion producing a photo-electron in a high Quantum Efficiency (QE) photocatode

The photo-electron is transported by a drift electric field onto a microchannel plate (MCP) in Chevron configuration

The electrons cloud produced by the MCP is carried by another drift field onto the input (bump-bonding) pads of a bare Timepix4 ASIC, where it is sensed as a charge pulse by the read-out electronics

Detector operating principle

Photon conversion producing a photo-electron in a high Quantum Efficiency (QE) photocatode

The photo-electron is transported by a drift electric field onto a microchannel plate (MCP) in Chevron configuration

The electrons cloud produced by the MCP is carried by another drift field onto the input (bump-bonding) pads of a bare Timepix4 ASIC, where it is sensed as a charge pulse by the read-out electronics

The Timepix4 ASIC will amplify, discriminate and digitize the MCP signal inside the vacuum tube

Pixelated anode: Timepix4 ASIC

- > ASIC in 65 nm CMOS
 - Developed by Medipix4 collaboration
- > 512 \times 448 pixels (55 µm \times 55 µm each)
- Large active area: 7 cm²
- Bump pads used as anode 24700 µm

- Signal from MCP amplified and discriminated
- Time-stamp provided by Time-to-Digital Converter (TDC) based on Voltage-Controlled Oscillator (VCO)
 - 195 ps bin size (~ 56 ps r.m.s. resolution) for Time-of-Arrival (ToA) measurements
 - **1.56 ns** bin size for Time-over-Threshold (ToT) measurements
- High rate capability:
 - maximum bandwidth: 160 Gb/s
 - maximum hit rate: 2.5 Ghits/s
- Output:
 - 64 bits of data per hit with 64b/66b encoding
 - transmitted via 16 high-speed links up to 10.24 Gbps

[X. Llopart et al 2022 JINST 17 C01044]

Data Acquisition (DAQ) system

- Data driven front-end electronics
 - 64 bits for each pixel hit
 - 40 MHz slow control
 - 16 x 10.24 Gb/s fast serial links
- FPGA-based control board:
 - detector configuration
 - serial data decoding
 - sends pre-processed data to server to store them for post-processing
- DAQ server
 - receives and decodes data from control board
 - data analysis
 - data storage

Timepix4 characterization measurements - Setup

- SPIDR4 control board, developed by NIKHEF
- **Timepix4_v2**:
 - \circ ~ bonded to a 100 μm n-on-p Si detector biased at -150 V
 - metallization with holes pattern
 - Courtesy of the CERN and NIKHEF Medipix4/VELO groups

Timepix4 characterization measurements - VCO calibration

- VCO of different pixels oscillate with different frequencies
- Finer ToA bins generated with different width
- ToA and ToT measurements heavily affected by this effect
- Internal test pulse tool exploited to calibrate VCO frequencies for the whole matrix (~28.7k VCO)

Timepix4 characterization measurements - ToT vs Q calibration

- Analog testpulse
- Non linear calibration
- Threshold set to 1 ke⁻
- Per-pixel calibration done over the whole matrix

(~230k pixels)

Calibration of pixel [305,144]

- Analog testpulse
- Non linear calibration
- Threshold set to 1 ke⁻
- Per-pixel calibration done over the whole matrix (~230k pixels)
- Automatic algorithm exploiting fast read-out
- Calibration fit parameters distribution

Timepix4 characterization measurements - ToT vs Q calibration

• Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

Timepix4 characterization measurements - ToT vs Q calibration

• Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

Timepix4 characterization measurements - Timing resolution

10

```
R. Bolzonella
```

- Laser focused using micro-collimator:
 - \circ σ = 1.4 pixel = 77 μ m
- Laser spot in fixed position for all presented measurements

- Laser focused using micro-collimator:
 - \circ σ = 1.4 pixel = 77 μ m
- Laser spot in fixed position for all presented measurements
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

- Laser focused using micro-collimator:
 - \circ σ = 1.4 pixel = 77 μ m
- Laser spot in **fixed position** for all presented measurements
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

- ToT vs charge calibration applied to each pixel
- Distribution divided into "vertical" slices, each one selecting a narrow range of charge
- Timing resolution values extracted for each slice
- Distribution of timing resolution as a function of injected charge
- For the pixel [305,144], where the laser is focused, the standard deviation saturates at 128±1 ps rms
- Subtracting the contribution of the reference TDC (60 ps), a resolution of 111±1 ps rms is obtained

- ➢ For each cluster:
 - weighted average of ToA using charge as weights
 - cluster charge computed
- Timing resolution dependency on cluster charge:
 - best result: $\sigma_{ToADiffAvg} = 79 \pm 1 ps rms$
 - timing resolution subtracting reference TDC contribution:

 $\sigma_{_{TOAAvg}}$ =49 ± 1 ps rms

Cluster timing resolution selecting a shell of pixels

- Large improvement in the resolution from 1-pixel clusters to 5-pixels clusters
- > Small or negligible improvement increasing further the cluster size

- > Timing resolution dependence on:
 - Pixel threshold
 - Temperature
 - Position across the whole matrix

Conclusions

We are developing a new detector for single photons in the visible range:

- Vacuum tube with MCP and Timepix4 CMOS ASIC as anode
- ▶ Funded by the European Research Council (G.A. No. 819627)
- Complete integration of sensor and electronics (internal data processing and data transmission)

It will allow the detection of up to 10⁹ photons/s with:

- simultaneous timing and spatial information with excellent resolutions
- characteristics of MPC fully exploited
- high-rate data acquisition (up to ~160 Gb/s)
- > Possible applications: high energy physics, life sciences, optical quantum physics

Promising results characterizing Timepix4 bonded to Si sensor:

- ToT vs Q per pixel calibration
- > single pixel timing resolution: $\sigma_{TOA} = 111 \pm 1 \text{ ps rms}$
- > cluster timing resolution: $\sigma_{TOA} = 49 \pm 1 \text{ ps rms}$

Development is ongoing:

detector, DAQ and software system

R. Bolzonella

Thanks to the CERN and NIKHEF teams for the support

Backup

ToA and ToT measurements

➤ ToA measurement:

40 MHz reference

- coarse Time-of-Arrival (ToA), 40 MHz clock (25 ns bins width)
- fine-ToA bins, 640 MHz clock, generated by the VCO (1.56 ns biins width)
- Ultrafine-ToA, by 4 copies of 640 MHz clock (195 ps bins width)
- ToT measurements: only coarse and fine

1

Analog and digital front-end

Timepix4 noise

X. Llopart (CERN)

Power consumption and cooling

- > Timepix4 power consumption \sim 5 W
- Goal: stable operation with 20°C inside the vacuum tube
 - Cold finger attached to the ceramic carrier

Single pixel timing resolution	<100 ps
Position resolution	5-10 μm
Maximum rate	2.5 x 10 ⁹ hits/s
Dark count rate	~10 ² counts/s
Active area	~7 cm ²
Channel density	~0.23 M channels (512 x 448 pixels)

Software

- Dedicated software under development
- C++ based
 - $\circ \quad \text{Low-level} \quad$
 - Object-oriented
- Readout and Control in unique CLI
- Read and Write register functions
- Application Programming Interfaces for Timepix4
- Packets decoder

Timepix4 characterization measurements - VCO calibration

- VCO of different pixels oscillate with different frequencies
- Finer ToA bins generated with different width
- ToA and ToT measurements heavily affected by this effect

- Packet decoding
- Clustering algorithm:
 - DBSCAN algorithm
 - variable spatial and timing parameters to gather hits on the same cluster
- ToA of each hit compared with the reference ToA of the associated digital pixel signal

Cluster timing resolution

- ➤ For each cluster:
 - weighted average of $ToADiffAvg_i = \sum_j (ToADiffCorr_{i,j} \cdot ToT_{i,j}) / \sum_j (ToT_{i,j})$
 - cluster ToT (*ToTSum*_i) computed

ProjectionY of binx=[453,462] [x=123593.750000..126328.125000]

Cluster timing resolution selecting a shell of pixels

- Similarly, the cut has been applied to the total ToT of the selected cluster (*ClusterToT* ∈ [58000 ns, 62000 ns] ~ [640000 ke⁻, 680000 ke⁻]), instead of the ToT of the central pixel
- This simulates the measurement of a fixed amount of charge spread on a different number of pixels
- Considering more pixels:
 - **statistical factor**: error reduced because of average (dominant at low pixel multiplicity)
 - pixel intrinsic resolution: error increased because charge spread among pixels, and each one receives less charge (dominant at high pixel multiplicity).

MCP-PMT limitation

- MCP-PMT lifetime limited by the integrated anode charge, which leads to a strong QE reduction
 - From 0.2 C/cm² to >30 C/cm² in recent years thanks to ALD
- With the expected photon hit rate (~10 MHz/mm²), assuming a 10⁴ gain (very conservative), and an operation of 10 years with 25% duty cycle we have:
 - Total IAC ~120 C/cm²
 - Anode current density ~2 μA/cm²
- ALD coating is based on the deposition of resistive and/or secondary emissive layers (could tune MCP properties)
 - Reported adverse effects on saturation current on some model with ALD
- Strong R&D to find the best "recipe" is needed

[D. Miehling et al., NIM A 1049 (2023) 168047]