

中国科学院高能物理研究所

Institute of High Energy Physics, Chinese Academy of Sciences

TIPP2023

TECHNOLOGY AND INSTRUMENTATION & PARTICLE PHYSICS CONFERENCE 4 - 8 SEPTEMBER 2023

Development of a novel high granularity crystal electromagnetic calorimeter

Baohua Qi On behalf of CEPC Calorimeter Working Group

TIPP2023 CTICC Cape Town South Africa September 4 – 8, 2023

qibh@ihep.ac.cn

2023/09/07

Motivations: new detector for CEPC

- CEPC: future lepton collider
 - Higgs/Z/W bosons, BSM searches, etc.
 - Precision jet measurement
 - Particle-Flow Algorithm (PFA)
 - Different final state particles -> different detectors
 - High-granularity calorimeter: separation of showers
- New "CEPC 4th concept" detector design
 - - 5D detector: spatial + energy + time
 - Intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Scintillating glass HCAL
 - High density for better boson mass resolution

TIPP2023 talks:

<u>Glass Scintillator HCAL at future e+e- Higgs factory</u> <u>Development of highly granular hadronic calorimetry with glass scintillator tiles</u>

Crystal ECAL R&D: overview

Design concept

- Crystals arranged to be orthogonal between layers
- Readout from two sides

Optimization and validation

- Dedicated new reconstruction software
- Performance evaluation and optimization

Hardware development

 Development of crystal module(s) for beam tests

Design concept of high-granularity crystal ECAL

General design concept

Supercell of the crystal ECAL

- Key points
 - Long crystal bars instead of small crystal cubes
 - Save #channels and minimize dead materials
 - Achieve high-granularity with information from adjacent layers
 - Double-sided readout

Long crystal bar with 2 SiPMs

• Positioning potentials with timing at two sides

- Challenges
 - Difficulties in the mechanical/geometry design
 - Impact from ghost hits

Ghost hits case when 2 or more particles hit on one supercell

Crisscrossed arrangement

between layers

Workflow of preliminary performance evaluation

- Geometry adapted from the CEPC baseline detector (SiW ECAL)
- Application and optimization of "Arbor-PFA" under CEPC Software

PFA performance: Higgs benchmark

• Physics performance: Boson mass resolution (BMR)

Baohua Qi (IHEP), Zhiyu Zhao (TDLI/SJTU)

• Studied with 1 cm³ crystal cubes

• Good performance with Arbor-PFA algorithm

2023/09/07

Reconstruction algorithm dedicated to long crystal bar ECAL

• Key issues: sophisticated software

Detector optimization: barrel ECAL geometry

- CEPC crystal ECAL barrel geometry design
 - Finer segmentation of towers
 - Decrease outer radius for lower cost of the outer detectors
 - 28 towers per ring, 17 rings along beam direction
 - ~25 radiation length: 28 layers

module $\frac{\pi}{2} - \frac{\alpha}{2} - \beta$

Quan Ji, Chang Shu (IHEP)

cylindrical crystal ECAL

• First optimization: implement an extra angle to avoid energy leakage

Key questions

- Space for electronics and cooling
- Assembly method

Hardware design of high-granularity crystal ECAL

- Requirements of hardware development
 - Crystal candidates: e.g. BGO (~8000 p.e./MeV, 300ns decay time)
 - SiPM candidates: large dynamic range, low cross-talk...
 - Electronics: large dynamic range, good time resolution...
- Key issues
 - Single photon resolution is incompatible with large dynamic range
 - Requirements: 0.1~10³ MIPs dynamic range, ~200 detected p.e./MIP
 - Radiation hardness, temperature stability, mechanical tolerance...

Introduction to the first small-scale crystal module

- First $12 \times 12 \times 12$ cm³ BGO modules development
- Motivations
 - Identify critical questions/issues on system level
 - Mechanical design, PCB and electronics...
 - Evaluate performance with TB data
 - Validation of simulation and digitization
- Beam test at CERN T9 beamline
 - Muon, electron and pion data
 - Future plan: 2 modules serial arrangement

Beam test for the first module: 72 channels, double-sided readout

- 36 crystals wrapped with ESR and Al foil
- 3D printed support structure

Uniformity scan of BGO crystal bars

- Batch test of SIC-CAS BGO crystal bars
 - 40 crystals with ESR and Al foil wrapping
 - Scan with Cs-137 radioactive source

Zhikai Chen (USC)

- Generally good uniformity along a single bar
- Response varies among bars, 36 crystals were selected for beam tests

Mechanical and PCB design

Electronics and trigger scheme

Beam test: installation of module

Beam test: installation of module

• Setup of the beamline

CALICE-CEPC calorimeter prototypes

Self-trigger runs when the crystal module is moved out from the beamline

Beam test data summary

- 10 GeV/c muon- beam: MIP response
 - High/low gain, Hold-Delay time, shaping time scans
 - ~5.5M events acquired
- 0.5~5 GeV/c electron beam: energy response
 - ~980k events acquired
- Other data
 - Pion- data for high fluence test
 - > 80% trigger loss at ~20k events per beam spill
 - Self-trigger of "leaked particles" from upstream
 - Muon events can be clearly observed
 - Temperature monitoring data
- ~2°C temperature change during the beam test

- Parameter scans
- Severe energy leakage is expected
- Preliminary reference for energy resolution

Muon data for parameter scans and calibration

- 10 GeV/c muon- beam: MIP response
 - High-gain and Low-gain scans
 - Hold-Delay / Shaping time scans
 - Channel-by-channel calibration

- Successfully acquired muon data with good quality
- Selected parameters for electron data taking
- Channel-by-channel calibration completed

Electron data: energy response

• Data: calibrated channel-by-channel with muon events, 0.5MIP threshold

• Event selection: hitting at the center of the module

• Still significant energy leakage after event selection

Beam profile: severe changes in the spatial distribution of the beam spot

Electron data: energy resolution

- Simulation of beam test experiments: electron events
 - Realistic module geometry
 - Upstream material, beam profile, momentum uncertainty...

Energy Resolution

- Energy resolution of Data is worse than MC
- Data shows better energy linearity and larger mean value of energy
- Further check and improvements on data:
 - Studies on crosstalk, temperature calibration...

Plan of the second beam test at DESY

DESY beam test in October:

- Prepare 2 modules in serial
- Support structure for two modules
- Shielding...

- EM Energy resolution is expected to < 3% at 1 GeV
 - Improve collimation of the beam spot
 - Re-examine the PCB design to reduce noise
 - Improve coupling of SiPMs
- Further beam test targets
 - Time resolution of the 40/60 cm long crystal bars

Summary and prospects

- Introduction of high-granularity crystal ECAL R&D status
- First small-scale crystal module was developed, and the first beam test of has been successfully completed
- Preliminary performance study has been done
- Further analysis of beam data
- The second module is in production and another beam test is scheduled
 - Energy measurement with two modules
 - Time resolution study with long crystal bars

Thanks to every teammate for their contribution!

Crystal ECAL: specifications

Key Parameters	Value/Range	Remarks
MIP light yield	~200 p.e./MIP	~8.9 MeV/MIP in 1 cm BGO
Dynamic range	0.1~10 ³ MIPs	Energy range from ~1 MeV to ~10 GeV
Energy threshold	0.1 MIP	Equivalent to ~1 MeV energy deposition
Timing resolution	~400 ps	Limits from G4 simulation (validation needed)
Crystal non-uniformity	< 1%	After calibration
Temperature stability	Stable at ~0.05 Celsius	Reference of CMS ECAL
Gap tolerance	~100 μm	TBD via module development

Challenges/issues...

- Crystal size optimization, as well as realistic ECAL geometry design
- Sophisticated software for long bar crystal ECAL
- New BGO crystal with lower light output and faster decay time (collaboration with SIC-CAS)
- Limitation from SiPM dynamic range
- Radiation damage

EM energy resolution: light yield requirements

- Light yields: number of detected photons per MIP ۲
- Energy resolution: need stochastic term < 3%

Light Yield vs Stochastic Term

Simulation: 40×40×28 supercell, BGO long bars, gaps, 1~40 GeV electrons Digitization: photon statistics, gain uncertainty, ADC error,...

- Good resolution requires
 - Moderately high light yield \rightarrow dynamic range
 - Low energy threshold \rightarrow noise level

Key requirements

Light yield required for one crystal: ~200 p.e./MIP (1 cm BGO)

Reconstruction algorithm dedicated to long crystal bar ECAL

- Occupancy of ECAL towers: challenges on reconstruction
- Hottest tower: the tower with the largest number of particles hitting on
- 4 jets event: $e^+e^- \rightarrow ZH, Z \rightarrow q\bar{q}, H \rightarrow gg$

- Most towers have 0~1 particle hitting on
- Occupancy of these towers can be ignored

- Always have multiple particles hitting on one tower
- Need to deal with the occupancy by algorithm improvement
- Potential performance degradation needs to be understood

Yang Zhang (IHEP)

Key issues