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SiPMs in particle physics experiments

• Silicon photomultipliers (SiPMs, aka MPPCs) are becoming widely 
adopted in many particle physics experiments at accelerators

– CALICE, T2K, Belle II, CMS, GlueX, KLOE-2, LHCb, MEG II, NA62, …

– … and more experiments are considering them for upgrades

• SiPM advantages are many and widely known

– Excellent photon counting performance, high detection efficiency, high 
gain, fast response, compactness, immunity to magnetic field, low bias 
voltage, decreasing cost per unit of area, …

• And so the drawbacks

– High dark counts, moderate radiation hardness, performance strongly 
dependent on bias voltage and temperature, high capacitance per unit of 
area, crosstalk, after-pulses, …

• All the experiments mentioned above adopt similar strategies to 
mitigate drawbacks

– Operation at low and stable temperature

– Precise voltage and current control

– (Periodic annealing)
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Powering SiPMs at HL-LHC

• At HL-LHC challenges with SiPMs will further increase

• Use case 1: CMS Barrel Timing Layer (LYSO bars + SiPMs)

– 768 SiPMs per tray (with shared bias supply)

– About 1 mA/SiPM at EOL irradiation level → 0.8 A total

– Up to 40 m distance between bias PSU and SiPMs

– No access to the detector after the tracker is mounted

– Limited power budget, bias voltage decreased as dark current 

increases

• Use case 2: CMS High-Granularity Calorimeter (plastic 

scintillator tiles + SiPMs)

– Similar needs

Point-of-load (POL) regulation of SiPM bias supplies                          

and on-detector monitoring of SiPM current
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CMS BTL module

CMS BTL interfaces

CMS BTL tray



ALDO2 ASIC =

• SiPM bias voltage regulation, protection, 

and monitoring

– Fine segmentation

• 768 channels for each HV bias supply                

→ 16 channels for ALDO HV channel

– Independent setting and switch-off of each 

SiPM group

• ~Few V bias voltage adjustment with ~tens mV 

resolution

– Dark current measurement for each group

• FE ASIC power supply regulation

– Filter noise and transients on the power supply

– Enhance thermal and load stability

– Fine segmentation 

• 6 FE ASIC for each bPOL DCDC                                                      

→ 1 FE ASIC for each ALDO

– Generate aux voltages (e.g. GBT-SCA 1.5V)
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Specs

LV part

• Input voltage: 1.6 V to 3.3 V

• Output voltage: adjustable (min 0.6 V)

• Output current: 0.6 A

• Minimum dropout: 0.4 V

• PSRR/line regulation: -40 dB (10 μV/mV) at max 

load

• Noise: 30 μV RMS (10 Hz – 100 MHz)

• Thermal stability: 50 ppm/°C

• Thermal overload and over-current protection 

(0.9 A limit)

• Shutdown capability

HV part

• 2 independent channels

• Output voltage: adjustable, 10-60 V

• Output current: 32 mA 

• Minimum dropout: 1 V at full load

• PSRR/line regulation: -40 dB (10 mV/V) at max 

load

• Noise: 350 μV RMS (10 Hz – 100 MHz)

• Thermal overload and over-current protection 

(50 mA limit)

• Shutdown capability

• Output current measurement
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Technology choice

• onsemi 0.35 μm I3T80 CMOS technology

– Qualified for radiation hardness by CERN DCDC group (F. Faccio et al., 

DOI: 10.1109/TNS.2010.2049584), used by FEAST DCDC and some 

bPOL DCDCs

– Has all the devices needed (70 V N- and P-channel DMOSFETs, 

standard LV MOSFETs, etc.)

• Still some critical points for our application

– ELT required for LV NMOS

– HV NMOS requires custom layout to reduce leakage above 100 krad

– On resistance of HV MOSFETs increases with displacement damage

• Not super critical for our application, use much larger transistors

– Use all the standard RHBD techniques (guard rings, spacing, etc.)

– HV transistors have thin-oxide gates, max Vgs limited to 3.6 V
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LV part

• Standard LDO topology (PMOS output MOS)

– >500 mA output current, very large output MOS

– Adjustable gain with external resistors

– External compensation with low ESR capacitor

• Embedded bandgap

– 3 bandgaps included (MOS, PNP, NPN based)

– MOS-based selected due to best radiation hardness

• Output can be disabled to power cycle the load

• Overcurrent protection (OCP) and overtemperature 
protection (OTP) protect the device in case of load 
issues (shorts, etc.)
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HV part

• LDO topology (HV PMOS output MOS), driven by 
requirements

– Improve stability and noise of bias supply → active 
feedback

– Capability to disable each channel independently in case of 
issues in one SiPM array → series switch required

– Avoid parasitics on FE ASIC input node → high-side 
regulation 

– Output current measurement → current mirroring

– High efficiency → PMOS output HV MOS for low dropout 
(e.g. 45 V input, 42 V output, 93% efficiency)

• Output voltage adjustable in two ways

– Gain resistors to match SiPM model needs

– Voltage reference using a DAC outside of the chip (FE ASIC 
in BTL or GBT-SCA in HGCAL)

Main challenges of this architecture

• Driving LV (thin-oxide) gate of HV MOS

• Gain is high (30-50 V/V)

– DAC noise and input offsets must be minimized

• External compensation with low ESR tantalum 
capacitors 

– Few options rated 50 V, rather bulky (7.3x4.3x1.8 mm3)
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• The error amplifier has to operate between HV rail (up to 60 V) and GND

– Mix of HV and LV transistors + bias lines to limit DC voltage excursion within LV MOS max ratings

• Bias lines (BIASH and BIASL) are provided externally (ALDO2v0-v1) or generated internally (ALDO2v2)

• High loop gain (70 dB) to minimize regulation errors

• The regulator is disabled by acting on the error amplifier

HV part – Error amplifier
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• The over-current protection and output current measurement use a similar strategy

– A fraction of the output current is mirrored in the two circuits

– The over-current circuit has a constant current limit (no foldback)

– The current measurement circuit further mirrors the output current with tunable ratio (1/40 and 1/800)

• An external resistor converts the output current to a voltage, matching the ADC full-range and SiPM specs

HV part – Output current protection and monitoring

05/09/2023Powering SiPMs and front-end electronics in HEP detectors: the ALDO2 ASIC - TIPP2023 - Paolo Carniti 10

From error
amplifier

BIASL

HV

x80x2x1

HV

LV (VCCCUR)

VPRHV

HV PMOS pass 
transistor

Output

To ADC

To error amplifier

I-to-V 
resistor

(external)



Over-temperature protection
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PTC sensor

Threshold 
(external)

Comparator
To LV/HV disable

Weak hysteresis

Parameter Test Conditions Min Typ Max Unit
VT Temperature sensor voltage Temp. = 27 °C 163.9 166.4 168.7 mV

%VT Relative error -1.5 1.4 %
dVT/dT Thermal coefficient 0.411 0.424 0.437 mV/°C
dVT/dVDD Power supply coefficient 6.8 mV/V
dVT/dID Bias current coefficient Linearized around 6 μA 1 mV/μA

• The over-temperature protection acts both on HV and LV part

• Internal PTC voltage compared to an external threshold

• PTC element based on weak-inversion composite MOS transistor (10.1093/ietele/e91-c.4.662, 

10.5772/39231 and 10.1049/el.2010.1346)

VT

VDD

ID

PTC sensor
(10.1093/ietele/e91-c.4.662)



Prototyping
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• 2019: ALDO2v0

• 2021: ALDO2v1

– Re-centered bandgap trimming, higher 

default current limits

• 2022: ALDO2v2 (final production)

– Self-bias, extend input voltage range

– 45k chips produced

Die area 2.47 x 1.95 mm2

Package QFN64

ALDO2v0 ALDO2v1

ALDO2v2



Over-
temperature 
protection 

(shorts on all 
outputs)

Load regulation

Line regulation and PSRR – LV part

Selected measurements
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20 mV (0.5 A step)

5 mV/A

20 μs/div

300 μV/mA (20 mA step)

20 ms/div

No undershoot

Output voltage spread of ALDO2v2

Same wafer
Different

wafers

LV output
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spread

Same wafer
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wafers

HV output
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HV part

LV part x80x2x1
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Output

Current
meas

IV curve with 
internal meas

Low range

RMS ~300-350 μV
(BW 10 Hz – 100 MHz)

Noise HV (40 V in , 38.5 V out)

SensL MicroFC-SMTPA-10020
Fluence: 1e14 neq

-57 dB (1.3 mV/V)

-72 dB (0.25 mV/V)

Bandgap line regulation

Limited by 
parasitics

-44 dB @ full load

PSRR LV part (1.8 V in, 1.2 V out)



Radiation hardness

Irradiation performed in several facilities

• TID: KIT (ambient T) and CERN (cold T)

• Neutrons: LENA and JSI

• Heavy ions: LNL
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Radiation levels at 3000 fb-1 in CMS BTL

TID Neutron fluence Ch. hadron fluence

3.2 Mrad 1.9e14 neq cm-2 1.5e13 cm-2



Radiation hardness – TID

Irradiation performed in several facilities

• TID: KIT (ambient T) and CERN (cold T)

• Neutrons: LENA and JSI

• Heavy ions: LNL
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Radiation levels at 3000 fb-1 in CMS BTL

TID Neutron fluence Ch. hadron fluence

3.2 Mrad 1.9e14 neq cm-2 1.5e13 cm-2

0.4 Mrad/h

DAQ crashed during the night…

1 Mrad/h

7 Mrad/h

After a few days 
at ambient T

LV part
• Small drift (~ 1%)
• Clear effect of dose rate 

and annealing

Irradiation 
at -30 c°C

HV part
• Small drift (< 0.2% )

VOUTHV

I-V measurement 
• Change of 5%

CURMEAS



Radiation hardness – TID

Irradiation performed in several facilities

• TID: KIT (ambient T) and CERN (cold T)

• Neutrons: LENA and JSI

• Heavy ions: LNL
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Radiation levels at 3000 fb-1 in CMS BTL

TID Neutron fluence Ch. hadron fluence

3.2 Mrad 1.9e14 neq cm-2 1.5e13 cm-2

• Typical thermal stability  
before irradiation 50 
ppm/°C

• Irradiation does not 
significantly affect thermal 
stability



Radiation hardness – Heavy ions

Irradiation performed in several facilities

• TID: KIT (ambient T) and CERN (cold T)

• Neutrons: LENA and JSI

• Heavy ions: LNL
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Radiation levels at 3000 fb-1 in CMS BTL

TID Neutron fluence Ch. hadron fluence

3.2 Mrad 1.9e14 neq cm-2 1.5e13 cm-2
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• Single event transients (SET) 
observed

• Cause: OTP circuitry (comparator)

• Mitigation: more filtering of OTP 
threshold

• Extrapolation with conservatively 
low threshold LET (1 MeV cm2 mg-1) 
gives a SET rate of 10 mHz in whole 
BTL

• Further mitigation: FE ASIC can 
disable OTP circuitry by software

Take-home-message with SET:
Be careful with high-gain, high-

bandwidth and open-loop circuits



Line regulation – post-irradiation
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• Radiation damage degrades line regulation

• LV part

– Most critical because bPOL output is fixed during operation

– At 7 Mrad and full load (520 mA), line regulation starts degrading when 
input voltage gets below 1.7 V (500 mV dropout)

– Final choice for BTL: 600 mV dropout (1.8 V ALDO input voltage)

• HV part

– Less critical because dropout can be adjusted on PSU

– Min dropout: 2-3 V at detector EOL, >90-95% efficiency

– Large degradation in HV PMOS Ron at 1e15 neq cm-2 (x5 above EOL level)
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Yield and testing
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• 552 ALDO2v2 measured in a test socket 

– Samples picked randomly from the full production

• LV part: 100% yield

• HV part:

– 99.5% yield when counting partially working chips (e.g. with one channel that is always enabled)

– 99.1% yield when counting only fully working chips

• Final decision: no individual chip testing, chips tested on FE PCB (with 2 ALDOs, exp yield >98%)

Testboard with 
QFN64 socket 



Summary

• We have developed ALDO2, a multi-function rad-hard 
ASIC for the power management of SiPM-based HEP 
experiments

• Performance was validated over the course of 4 years 
of development, laboratory measurements and 
detector integration

• Radiation hardness was fully qualified up to 20 Mrad, 
1e15 neq cm-2 and heavy ions

• Full production has been completed, 45k chips 
produced

• ALDO2 is ready to be installed in two CMS detectors, 
BTL and HGCAL

Future prospects

• A possible ALDO3 would likely include DAC for bias 
adjustment, ADC for monitoring, and digital logic

• onsemi I3T80 fab2 (used for ALDO2) closed in 2022

– I3T80 still available in US fab, not yet qualified for radiation

– Availability through Europractice uncertain

• Alternative rad-hard HV technologies could be 
investigated
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Thanks for your attention
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LV part (1)
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• The LV part is completely independent from 

the HV part (this is the case when used with 

GBT-SCA)



LV part (2)
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• Three bandgaps included (only one selected in 
final application)

– PNP-based

– NPN-based

– MOS-based

• The reason for this is that the expected radiation 
levels are right on the edge where bipolar-based 
bandgaps could still be used (and they offer 
superior stability)

• MOS-based bandgap can be trimmed to 
compensate corner spread and/or simulation 
mismatch due to the use of ELTs

– «Passive» trimming: acts directly on bandgap resistors 
(resistors can be shorted externally to slightly tune the gain 
of the bandgap)

– 4 bits, ~8 mV LSB (± ~10% trimming wrt 630 mV)

– The trimming strategy relies on the fact that trimming can 
be done on a wafer-by-wafer basis



LV part (3)
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• In addition to the main regulator (0.5 A) there is 
also an auxiliary one (max 20 mA)

– This was originally intended to provide an external voltage 
reference to the front-end ASIC

– It is also used to generate the voltage reference for the 
over-temperature protection

• The design of the LV error amplifiers is quite 
standard

– Typical closed-loop gain: 1-2

– Loop gain: 54 dB

– Single-stage “mirrored” amp, NMOS input

• Output voltage is adjustable by changing feedback 
resistors

• Any bandgap can be selected as input of the 
voltage reference

• Compensation on output node with low ESR 
tantalum capacitors

• Overcurrent protection is also very similar to HV 
part



• The HV part is completely independent of the LV part

• Aux circuitry of the HV part has its own LV power domains

• No power-on sequence is required

HV part – Power domains
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HV regulator (CH1) HV regulator (CH2)



• The regulator can be disabled (default off)

• Bias current is provided externally (not from bandgap) to keep LV and HV independent

HV part – Error amplifier (2)
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From error
amplifier

BIASL

HV

x80x2x1

HV

Current
measurement

LV (VCCCUR)

VPRHV

Output

HV PMOS pass 
transistor

To PMOS gate

• The overcurrent circuit compares the output current to a gate threshold

• The error amplifier is disabled if current gets too high

• Current limit is constant (no foldback, operates together with over-temperature)

HV part – Overcurrent protection
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From error
amplifier

BIASL

HV

x80x2x1

HV

LV (VCCCUR)

VPRHV

HV PMOS pass 
transistor

Output

Current
measurementTo PMOS gate

• The current measurement circuit further mirrors the output current

• The ratio is tunable (1/40 and 1/800), adapting to BOL and EOL conditions

• An external resistor converts the output current to a voltage, matching the ADC full-range and 

SiPM specs

HV part – Output current measurement
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Tantalum capacitors

• For the stability, both HV and LV regulators rely on low ESR tantalum capacitors on output 

nodes

• Radiation hardness is not a problem

– Used widely in space applications due to they higher reliability and compact size

– Sensitive to humidity

• No problem in HEP detectors where ambient is controlled

– Tested up to 5 Mrad (https://core.ac.uk/download/pdf/227725417.pdf)

• Several models available for LV in small packages (22-100 μF, ESR < 200 mohm) 

• Less models for HV ones

– 50 V/63 V capacitors are thick

– Selected model: KEMET T521V106M050ATE090 (50 V, 10 μF, 90 mohm ESR, height 1.8 mm)

– Costly
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Accuracy of I-V curves

• The I-V curve with no load (only feedback resistors) shows that the accuracy of the current

measurement circuitry is as expected from simulations and previous measurements (<2% 

spread)
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Output
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Input voltage

Output voltage
(to 16xSiPMs)

TOFHIR
DAC

Feedback network 
current
(typical resistor values
200 + 5 kohm)



Spread
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• Spread from the whole production (ALDO2v2) is small, no need for bandgap trimming 

– 0.7% RMS on bandgap/LV regulator

– <0.1% RMS on HV regulator

Blue: 
ALDO2v2 from 
same wafer

Red:
ALDO2v2 sampled
randomly from 6 
wafers



Accelerated aging

• Accelerated aging using Arrhenius equation gives x2 
acceleration factor every 10 °C increase

• 10 years of operation can be accelerated to 1 month if
temperature is set 70 °C above operating temp

• In BTL operating temperature will be -30 °C

• We decided to perform accelerated aging at 80 °C

• Input voltages: 1.8 V and 45 V, output voltages: 1.2 V and 
42 V (40 V), nominal load currents: 500 mA and 30+30 mA

• Run fine for >700 hours (30 days), with 1 chip

• Temperature with on-board thermometer: 88 °C
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Temperature 
jump due to 
higher dropout 
on HV outputs



Operation at extremely low temperature

• We tried to do the same thing at low temperature (climatic chamber at -60 °C and -70 °C)

• Run fine for 240 hours (10 days), with 1 chip

• Temperature with on-board thermometer: -52 °C or -63 °C
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Change from
-60 °C to -70 °C



Operation beyond specs

• What happens if the chip is operated beyond specs?

• We increased the temperature to 90 °C, increased input voltages to 2.5 V and 50 V. Now BIASL 

voltage is at 3.5 V (beyond specs of diode-connected LV MOS and possibly beyond SOA of DMOS)

• Both regulators worked for 10 additional days
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Biasing diodes – IV curves

• After irradiation, we measure the diode IV curves using a Keithley 4200 semiconductor 
analyzer at different temperatures (-50 °C to +70 °C)

• NMOS-based diode (diode ‘L’) has small drift due to radiation

– Up to 200 mV voltage drift at fixed current

• PMOS-based diode (diode ‘H’) has significant drift

– Up to 700 mV voltage drift at fixed current
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700 mV

200 mV



I3T80 Fab2 closure

• I3T80 Fab2 in Oudenaarde (Belgium) was closed in June 2022

• There is a backup solution to Fab2: I3T80 fab in Gresham (USA)

– 8-inch wafers

– Different rules for metal slotting

– Radiation hardness unknown

• In 2021 we did an MPW of ALDO2v1 in Gresham fab

– Dies are unpackaged

– Available for radiation hardness qualification

• Future MPW runs with Europractice uncertain
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TID online monitoring - LV

• LV regulator is fully operational up to 20 Mrad at ambient temperature and 520 mA load

• All three bandgaps are well within a few % range at 3.2 Mrad (PNP and MOS ones are better, <1%)
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TID online monitoring - HV

• HV regulator is fully operational up to 20 Mrad at ambient temperature and 20 mA load

• Channel A started working in current-limited mode at about 12 Mrad (marker: ), because the over-current limit 
lowered during irradiation. Recovered temporarily by switching off the over-current protection
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Bandgap voltage references

• Bandgaps drifted by few percent after irradiations. All are well within usable range at nominal radiation levels

– Best: MOS bandgap, Second best: PNP bandgap 
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NPN Value Var T Drift

Pre-irrad 1.22 V -
-100 

ppm/°C

2.5e14 cm-2 1.22 V 1% -

1e15 cm-2 1.27 V 4%
-270 

ppm/°C

7 Mrad 1.15 V -6%
-140 

ppm/°C

20 Mrad 1.07 V -12%
-200 

ppm/°C

PNP Value Var T Drift

Pre-irrad 1.17 V -
-20 

ppm/°C

2.5e14 cm-2 1.21 V 3-4% -

1e15 cm-2 1.26 V 8%
150 

ppm/°C

7 Mrad 1.2 V 2%
-10 

ppm/°C

20 Mrad 1.21 V 4%
-40 

ppm/°C

MOS Value Var T Drift

Pre-irrad 625 mV -
70 

ppm/°C

2.5e14 cm-2 625 mV 0% -

1e15 cm-2 621 mV <1%
120 

ppm/°C

7 Mrad 637 mV 2%
70 

ppm/°C

20 Mrad 669 mV 7%
100 

ppm/°C
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