

于改道研究听 Tsung-Dao Lee Institute

Studies on Wide Dynamic Range SiPMs with High Pixel Densities

Zhiyu Zhao (TDLI/SJTU)

CEPC Calorimeter Working Group

Technology & Instrumentation in Particle Physics (TIPP2023)

New Detector for CEPC

- CEPC: future lepton collider
 - Higgs/W/Z bosons, top, BSM searches, etc.
 - Precision jet measurement
 - Particle-Flow Algorithm (PFA)
 - High-granularity calorimeter: separation of showers
- "CEPC 4th concept" detector design
 - High-granularity crystal ECAL
 - 5D detector: 3D spatial + energy + time
 - Excellent energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$

Development of a novel high granularity crystal electromagnetic calorimeter

Dynamic Range Requirement of ECAL

- Highly granular crystal electromagnetic calorimeter for CEPC:
 - Long crystal bars(BGO) are perpendicular between layers $\rightarrow 1 \times 1 \times 2cm^3$ granularity
 - Two sides readout: SiPM as the ideal sensor
- Dynamic range requirement:
 - Maximum energy deposition (from Bhabha electrons): $\sim 10 \text{GeV} \rightarrow \sim 50000 \text{ pe(1 side)}$
 - SiPMs with large dynamic range are needed, but calibration for them is not easy.

Outline

□ Measurement

- Experiment Setup
- PMT linear region selection, gain calibration, and pe number calibration by Si-PIN
- Response curve of SiPMs

D Simulation

• A model for simulating the number of pe detected by SiPM under different light intensities

D Summary

Experiment Setup

- Devices
 - Pico-second laser: ~40ps pulse width, 405nm wavelength
 - Beam splitter: divide the light between SiPM and PMT
 - SiPM
 - HAMAMATSU S14160-3010PS, $10\mu m$ pixel, $3 \times 3mm^2$, 89984 pixels
 - NDL EQR06 11-3030D-S, 6μm pixel, 3 × 3mm², 244720 pixels
 - PMT(HPK R7725): determine the number of pe that SiPM received
 - Si-PIN(Thorlabs): auxiliary scaler
- The linear region of the PMT can be extended by reducing its bias voltage.

Linear Region Selection for PMT

- Select the linear region of PMT with a Si-PIN at different light intensities
 - Weak light intensity \rightarrow 600V
 - Strong light intensity \rightarrow 500V
- Combination of discrete linear regions can keep linear within the whole light range

Number of pe Calibration

- Gain of PMT is not high enough to discriminate single pe with 600V bias voltage
- SiPM calibrates PMT in weak light intensity region

SiPM Dynamic Range Calibrated by PMT

- SiPMs:
 - HAMAMATSU S14160-3010PS, 10μm pixel, 3 × 3mm², 89984 pixels
 - NDL EQR06 11-3030D-S, 6μm pixel, 3 × 3mm², 244720 pixels
- Picosecond laser as source, no pixel recovery effect
- Saturation value of 3010PS is close to its pixels number. But the result of EQR06 is quite different, only half of its pixels number.
 - Limit by laser power? Spot non-uniformity? Calibration bias?

 p_0 : effective pixels number

•
$$p_1 \cdot \mathbf{x} : N_{photon} \cdot PDE$$

Measurement with Laser Diode

Pixel recovery and multi-fired

- Laser diode with a driver circuit
 - 1.6W diode, 450nm peak wavelength, <5ns pulse width, kHz trigger rate(by AWG),
 0~30V power supply
- The pulse duration is longer than pixel recovery time. The detected pe number can exceed the saturation value.

A Toy Monte Carlo of SiPM

- Light spot: 2D Gaussian, uniform
- Pixel number: 300 × 300 for HPK S14160-3010PS
- Fill factor filter: $A_{random} < F$, F = Fill Factor
- QE&AB filter: $A_{random} < Q$, Q = Quantum efficiency & Avalanche breakdown triggering probability,

 $F \times Q = PDE = 15\%@405$ nm

• Crosstalk filter: $A_{random} < C$, C = Crosstalk probability = 1%

Simulation Results

- All incident photons arrive on SiPM at the same time. No pixel recovery effect.
- Simulation is higher than experiment data.
 - Check the actual spot shape with CMOS(to be done)

HPK S14160-3010PS

- $3 \times 3mm^2$, 10 μm pixel \times 89984
- PDE=15% at 405nm
- Crosstalk=1%

Pixel Response Model with Recovery

- Pixels in SiPM can be recovered and fired multiple times if the pulse of light has a long duration.
- Gain and quantum efficiency will decrease if the pixel is not fully recovered.

Simulation of SiPM with Recovery

SHANGHAI JIAO TONG UNIVERSITY TSUNG-Dao Lee Institute

- MC with recovery effect:
 - Incident time of photon comes from Geant4 optical simulation of a $1 \times 1 \times 40 cm^3$ BGO crystal bar
 - Uniform light spot on SiPM
 - SiPM PDE spectrum and BGO emission spectrum
- $1 \times 1 \times 40 cm^3$ BGO crystal bar readout by SiPMs with $10 \mu m$ pixel and
 - $3 \times 3cm^2$ size can maintain linearity >95% at 5×10^4 pe light output

- Develop a method to measure the dynamic range of SiPM with large pixel number using PMT.
- Build a MC model for simulating the number of pe detected by SiPM under different light intensities, which contains spot shape, SiPM pixel density, PDE, crosstalk and recovery effect.
- Efforts are still needed to understand the gap between experiment and simulation.

