

Pixelised Resistive Micromegas for Tracking Detectors in Future Particle Physics Experiments

M.T. Camerlingo¹, M. Alviggi^{1,2}, M. Biglietti³, M. Della Pietra^{1,2}, R. Di Nardo^{3,4}, P. Iengo³, M. Iodice³, F. Petrucci^{3,4}, G. Sekhianidze¹, M. Sessa⁵


TIPP2023
TECHNOLOGY IN INSTRUMENTATION & PARTICLE PHYSICS CONFERENCE

- 1 INFN Napoli
- 2 Univ. di Napoli «Federico II»
- 3 INFN Roma Tre
- 4 Univ. Roma Tre
- 5 INFN Tor Vergata

Contents

- Introduction of MPGD and RHUM (Resistive High granUlarity Micromegas) R&D
- Description of the latest prototypes
- Characterisation studies in LAB
- Test Beam studies and preliminary results
- Possible tracking application in future particle physics experiments
- Other applications

MPGDs: Micro Pattern Gaseous Detectors

Proposed in several applications for future experiments (from the 2021 ECFA detector R&D roadmap)

Muon systems

	Facility	Technologies	Challenges	Most challenging requirements at the experiment
V	HL-LHC	RPC, Multi-GEM, resistive-GEM, Micromegas, micro-pixel Micromegas, µ-RWELL, µ-PIC	Ageing and radiation hard, large area, rate capability, space and time resolution, miniaturisation of readout, eco-gases, spark-free, low cost	(LHCb): Max. rate: 900 kHz/cm² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm² (10 years)
		GEM, μ-RWELL, Micromegas, RPC	Stability, low cost, space resolution, large area, eco-gases	(IDEA); Max. rate: 10 kHz/cm² Spatial resolution: ~60-80 µm Time resolution: O(ns) Radiation hardness: <100 mC/cm²
	Muon collider	Triple-GEM, μ-RWELL, Micromegas, RPC, MRPC	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Fluxes: > 2 MHz/cm² (0<8°) < 2 kHz/cm² (for 0>12°) Spatial resolution: ~100µm Time resolution: sub-ns Radiation hardness: < C/cm²
•	Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)	Micromegas, GEM, RPC	High rate capability, good spatial resolution, radiation hard, eco-gases, self-triggered front-end electronics	(CBM@FAIR): Max rate: <500 kHz/cm² Spatial resolution: < 1 mm Time resolution: ~15 ns Radiation hardness: 10 ¹⁵ neq/cm²/year
		GEM, THGEM, μ-RWELL, Micromegas, RPC, FTM	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	Max rate: <500 kHz/cm ² Spatial resolution = 50 μm Angular resolution = 70 μrad (η=0) to get Δ p/p≤10% up to 20 TeV/c

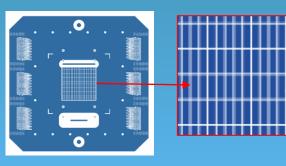
Central/Inner trackers

Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	MPGD	High spatial resolution, high rate/occupancy, radiation hardness, low mass	LHCb option: replace Scintillating Fibre tracker Spatial resolution:70 µm bending plane
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	TPC+(multi-GEM, Micromegas, GridPix), Drift Chambers, Cylindrical layers of MPGD	Ultra-lightweight inner or central tracker, high spatial resolution, high rate/occupancy, radiation hardness, low mass, transparency, cluster counting, TPC continuous mode at high rate, (IBF x Gain) ~1	Inner tracker (SCTF) Fluxes: ≥10 kHz cm ⁻² s ⁻¹ Time resolution: 1 ns X/X0 = 1% Spatial resolution: −100 μm Central tracker (CepC) Max. rate: −100 kHz/cm ² Spatial resolution: ~100 μm Time resolution: ~100 ns dE/dx: <5% Particle separation with cluster counting at 2% level
Rare processes, atomic and nuclear physics (SPS Kaons: K* Phase, K- Phase, Mu2eII/COMET-II, ELENA)	TPC, straw tubes	High spatial resolution, occupancy, fast/precise timing, radiation hardness, low mass, Gd-deposited MPGD detectors	Max rate = 500 kHz/straw (Mu2e II): Thinner straw material: 8 μm X/X0 ~ 0.02% per layer, X/X0 ~ 1% total (COMET+): Diameter = 4.8 mm Trailing time resolution = 1 ns per track
Hadron and nuclear physics (EIC, AMBER, PANDA and CMB@FAIR, PRES MAINZ, NA60+	Micromegas, GEM, μ-RWELL, straw tubes	High spatial resolution, good timing, radiation hardness , tolerance to magnetic field	(EIC) Max rate = 100 kHz/cm² Spatial resolution ~50 μm X/X0 = 5% dE/dx=12%, continuos running

https://cds.cern.ch/record/2784893/files/ECFA%20Detector%20R&D%20Roadmap.pdf

RHUM R&D objectives

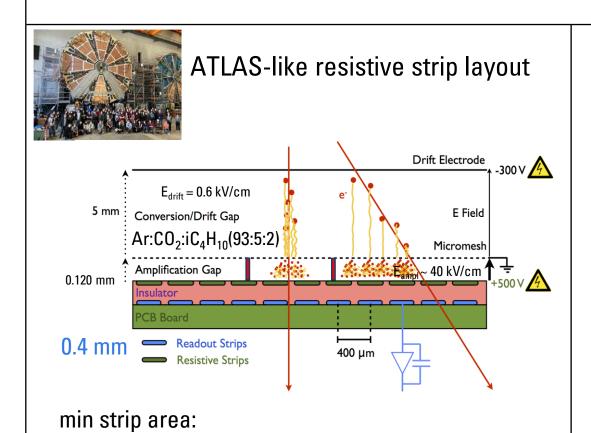
 Consolidation of resistive Micromegas technology with pad readout for operations at O(10 MHz/cm²) rate;


O(1-10) mm2 rectangular readout pad

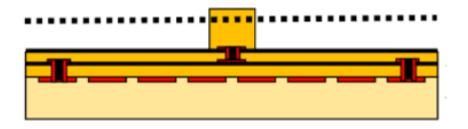
Customised resistive spark protection layout (next slide)

- Stability of operation at high gain factors;
- Simplification of construction technique and realization of large area prototypes;
- Spatial and time resolutions of < 100 um and O(1-10 ns);

PIXELATED ANODIC PLANE



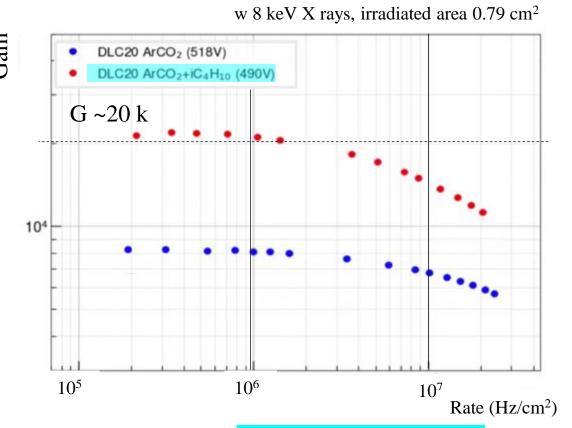
Pixelated readout: ~5x5 cm² anodic plane, pads of **0.8 x 2.8 mm**²


~20x20 cm² anodic plane, pads of 0.8 x 7.8 mm²

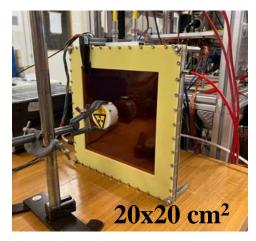
SOON: ~50x50 cm² anodic plane with mixed pad granularity

RHUM latest prototypes

SBU-DLC technique


DLC-like (Diamond-Like-Carbon)
 micro-mesh (dot line) + pillars (orange)
 DLC foils with 20-50 MΩ/sq (black)
 Polymide insulator (orange);
 6-8 mm vias pitch side;
 Copper readout pads (red) on PCB (beige)

Within the RHUM project, over 10 prototypes were built, each possessing distinct characteristics.

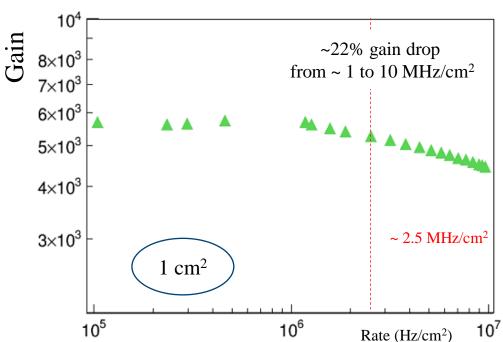

Studies of rate capability

DLC-like scheme

- Negligible charging-up effects.
- Gain stable up to 1-2 MHz/cm², and at higher rates, gain drop due to ohmic contribution.
- At 10 MHz/cm², gain drop of ~20-25% (can be compensated with ~10 V increase in the Amplification voltage).

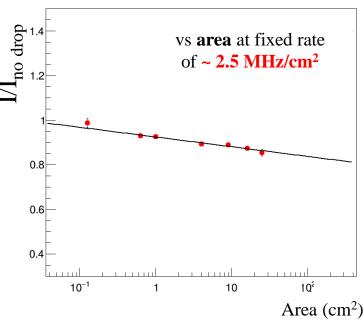
With the two gas mixtures, we observed compatible drops, $ArCO_2iC_4H_{10}(93:5:2)\%$ allows to achieve a higher gain with an improved spark quenching.

Towards large areas

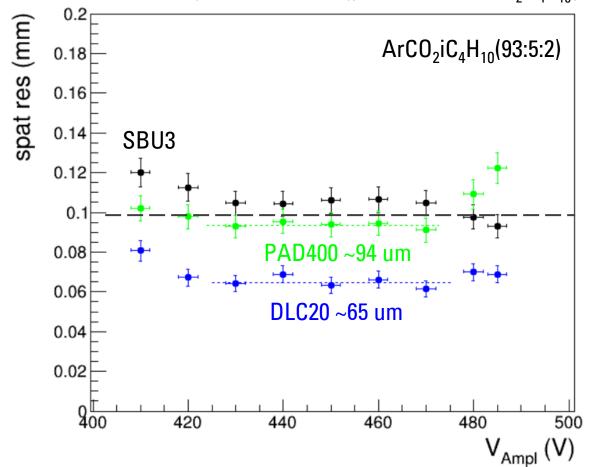

Active area ~20x20 cm²

o Pad size: 1x8 mm²

Number of Pads: 4800

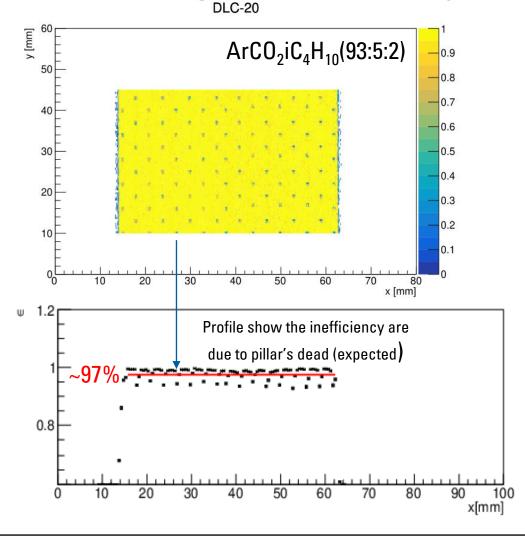

Repeated gain/rate capability studies with ArCO₂(93:7)%, varying irradiated area up

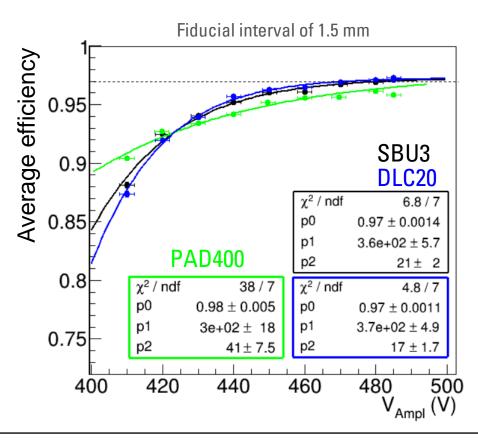
to 25 cm² max area until now.



PADDY400

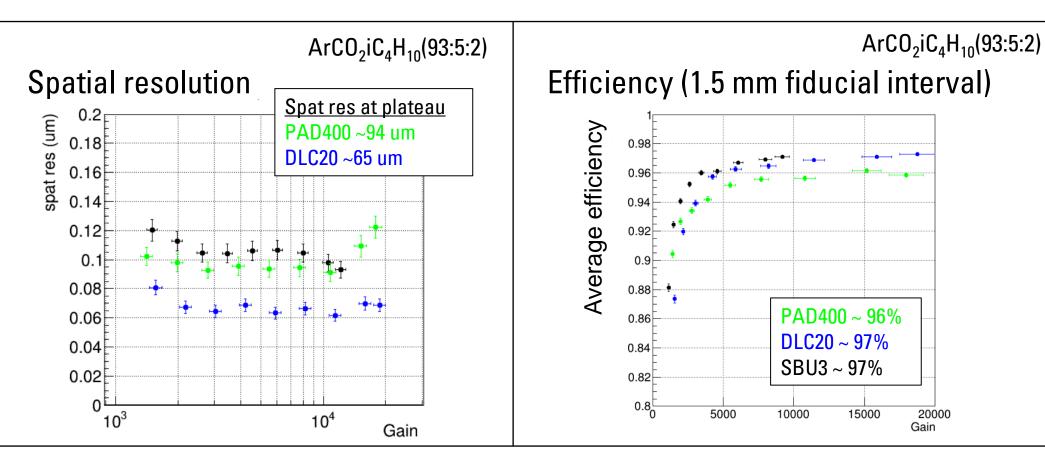
Spatial resolution


CERN SPS H4 Line (150 GeV/c muons), Gas Mixture ArCO₂iC₄H₁₀(93:5:2), drift voltage 300V, centroid method

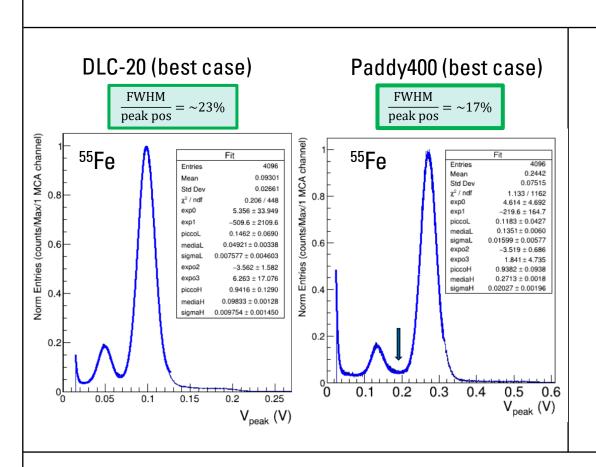

- ➤ FE saturation worsen the spatial resolution at high V_{ampl}
- > Second coordinate is limited by pad side (3-8 mm)
- ➤ Ongoing investigation how to optimise the position reconstruction

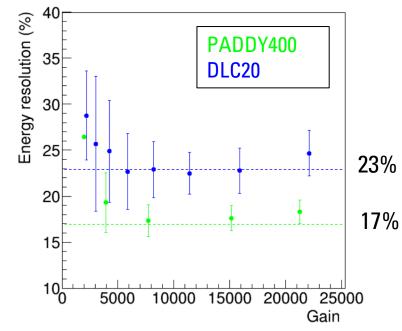
< 100 um Spatial resolution along the precision coordinate in a tracking 2D-plane

Tracking efficiency



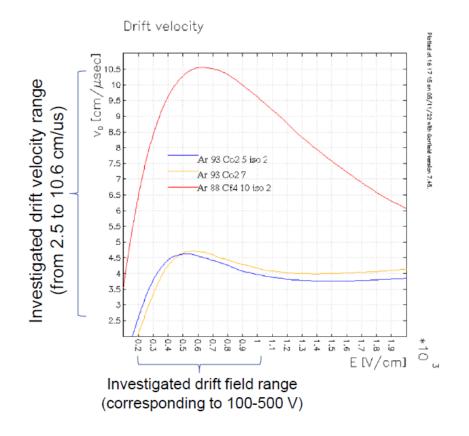
the average efficiency includes the dead areas due to the pillars

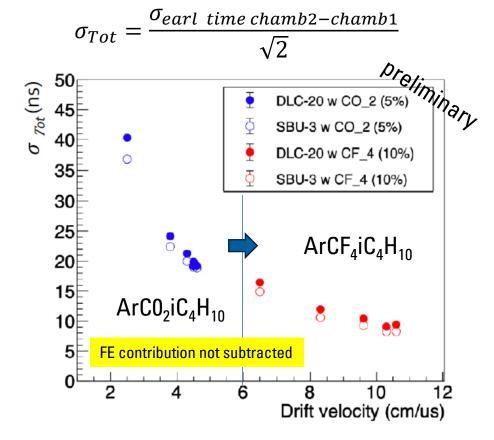

At $V_{ampl} > 440 \text{ V}$ (G > 4000 and spat res is <= 100 um), average tracking efficiency \geq 96% (~ 100% far from pillars)


vs GAIN

Centroid optimisation that considers the specifics of each detector, i.e. its resistive spark protection structure (ongoing)

Energy resolution (ArCO₂iC₄H₁₀-93:5:2)

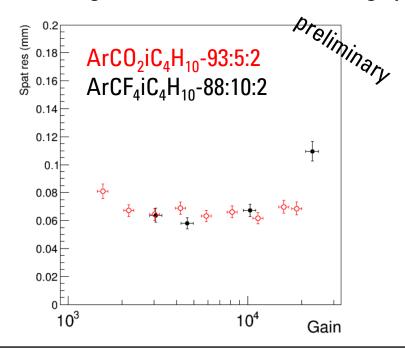


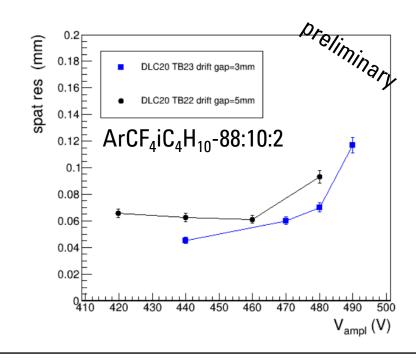

The energy resolution is ~20%. We are currently investigating how the detector design influences the uniformity and its average value.

Good energy resolutions: 17-18% is the best observed value up to now.

Time information: ongoing studies

Dominant contributions (i.e. optimisable factors): gaseous mixture, FE electronic

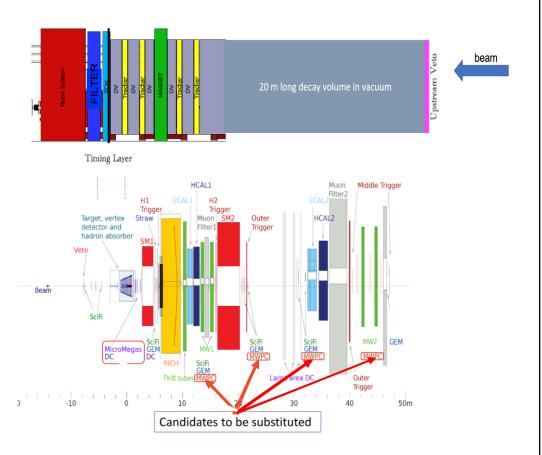



Contributions from the electronics and signal fit to extract the time is estimated to be around 4 ns from preliminary studies

Spatial resolution comparison

Different gaseous mixture (5 mm gap)

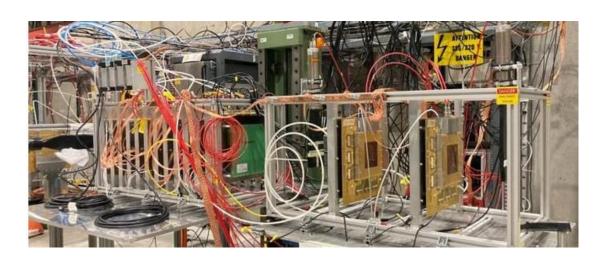
Different drift gap depth


Drift velocity does not affect spatial resolution.

On-going proposals

Expanding on the results achieved in the RHUM project, we are exploring potential collaborations for new experimental proposals that could benefit from Micromegas resistive technology (rMM)

➤ SHADOWS (Search for Hidden And Dark Objects With the SPS) intends to use rMM as Upstream muon Veto (Lol)


➤ AMBER (successor of Compass) will possibly upgrade the Muon detectors using rMM in M. Alexeev, "15th Pisa Meeting on Advanced Detectors" (link)



Project for other future rMM applications

➤ Digital Hadronic Calorimeters (DHCAL using ParticleFlow approach), rMM in the RD51 common project «Development for Resistive MPGD Calorimeter with timing measurement"

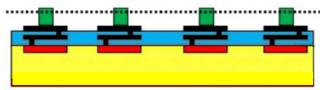
1° TB at CERN SPS H4 Line (150 GeV/c muons) wo absorbers

Occupancy map (weighted by charge)

Conclusions

The results show that pixelised resistive Micromegas:

are excellent candidates for particle tracking and trigger operation up to rate 0(10 MHz cm⁻²) with

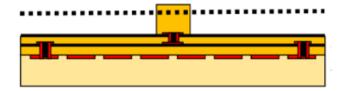

- stable HV behaviour,
- < 100 um spatial resolution for perpendicular tracks;
- < 10 ns time resolution;

reached a consolidated constructive techniques for large area detectors, to be considered in future experiment proposals

BACK-UP

Resistive layouts

PAD-P embedded resistors

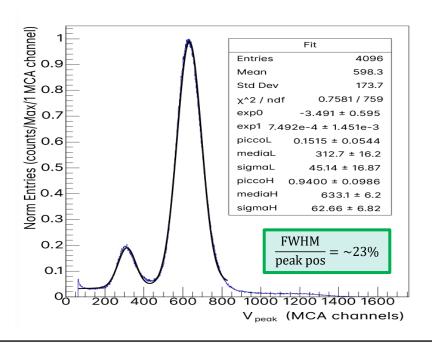


· 2 layers screen printed resistors

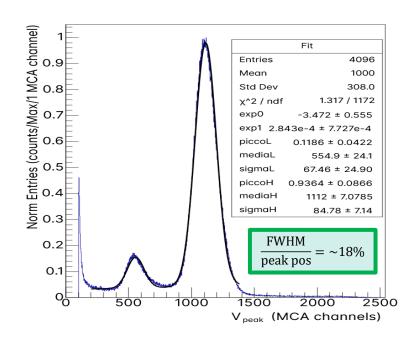
Independent protective resistor (black) for each readout pad (red)

 Ref [1] Construction and test of a small-pad resistive Micromegas prototype (https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11019)

DLC-SBU



DLC foils interconnected by evacuation vias


Ref. [2] Alviggi et al. - NIM Research Sec. A, Vol. 936, 21 Aug 2019, pp 408-411 (https://doi.org/10.1016/j.nima.2018.10.052)

⁵⁵Fe spectra

DLC-20 (best case)

Paddy400 (best case)

