

Rudolph Rogly - September 5th 2023 <u>**Technology in Instrumentation & Particle Physics Conference 2023</u></u>**

HKROC: a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

I. Physics motivation

II. ASIC design

III. Characterization measurements

IV. Latest upgrades and prospects Conclusions

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

I. Physics motivation

Kamiokande experiment (2027).

- - Wide energy range, **from MeV to TeV**.
 - Event rates **up to 1 MHz** (close supernova burst, e.g. Betelgeuse).

• HKROC (*Hyper Kamiokande Read-Out Chip*) is a high-performance ASIC, originally designed for the PMT read-out of the Hyper

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

From Physics program to Electronics specifications

Physics constraints

Low power consumption

Detect synchronous & asynchronous events

(accelerator/atmospheric/solar/supernova neutrinos, p decay

Detect close supernova without event loss

Low energy events detection

(e.g. solar/supernova neutrinos)

Detection of events from MeV to TeV

Electronics time resolution < PMT time resolution (1.3 ns)

Excellent energy reconstruction capability

While HK physics has driven the design, HKROC will not be deployed there. **Yet, its performance exceeds HK requirements and it is very flexible by design.**

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments 1p.e. ↔ 2pC

	Electronics requirements
	< 1 W / channel
y)	Auto-triggering capability
	Dead time < 1 µs
	Detection threshold: 1/6 p.e.
	Dynamic range up to 1250 p.e.
	Time resolution < 300 ps for 1 p.e.
	Charge linearity & resolution ~1%

I. Physics motivation

II. ASIC design

III. Characterization measurements

IV. Latest upgrades and prospects Conclusions

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

II. ASIC design

HKROC building blocks

Main charasteristics

- ASIC in TSMC 130 nm node.
- 36 channels \leftrightarrow **12 PMTs / ASIC**.
 - → *High gain* : up to 35 p.e. (70 pC)
 - → *Medium gain* : up to 350 p.e. (700 pC)
 - → Low gain : up to 1250 p.e. (2500 pC)
- Low power: **10 mW / channel**.

Measurements

- Slow path with shaper: 10b SAR-ADC for charge measurement @ 40MHz, dynamic range defined by the voltage divider and pre-amp. gain.
- Fast path: 10b TDC for time measurement, LSB = 25 ps.

Readout

- 4 readouts / ASIC : 1 readout \leftrightarrow 3 PMTs, i.e. 9 channels.
- High speed links (1.28 Gb/s).

Control

- 320 MHz fast commands.
- I2C protocol for slow control.

HKROC digitization

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

POLYTECHNIQUE DE PARIS

II. ASIC design

HKROC key features

- HKROC has **3 operating modes for hit rate optimization**:
 - → Normal mode: 10 words of 32 bits.
 - → Supernova mode (focus on HG only, i.e. low energy): 4 words of 32 bits
 - → Ultra-fast mode (characterization mode): 1 word of 32 bits.

• HKROC is a low-power waveform digitizer: for each trigger, N points are sampled @ 40 MHz (= 25 ns timestamp) and saved in memory. N is tunable by slow control (1 to 7).

 \Rightarrow Time + shape information (peaking time of shaper output ~30ns) give **pile-up discrimination** capabilities for events separated by \sim 30ns (can go even lower if needed).

Full snapshot

4b D header	2b Mode	24b Timestamp (TS)		
4b D header	6b hit map Q+T	10b Time	10b Charge HG	2b CRC
4b D header	6b hit map Q+T	10b Time	10b Charge MG	2b CRC
4b D header	6b hit map Q+T	10b Time	10b Charge LG	2b CRC

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

I. Physics motivation

II. ASIC design

III. Characterization measurements

IV. Latest upgrades and prospects Conclusions

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Test bench

Test pulse input

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Trigger performance

- Trigger threshold = 1/6 p.e. \rightarrow > 90% efficiency for signal as low as 1/5 p.e.
- Noise amplitude < 1/22 p.e.

Rudolph Rogly - TIPP 2023

- Maximal hit-rate with 100% efficiency:
 - \Rightarrow Normal mode \rightarrow 415 kHz.
 - \Rightarrow Supernova mode \rightarrow 950 kHz.
- Automatic switch between the two modes, when the memory is almost full (tunable).

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

POLYTECHNIQUE DE PARIS

Time resolution

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

Charge reconstruction in 2 steps (FPGA-compliant)

- Build a **reference waveform** to calibrate each channel:
 - → High gain channel : $q_{ref} = 1$. p.e.
 - → Medium gain channel : $q_{ref} = 20$ p.e.
 - → Low gain channel : $q_{ref} = 200$ p.e.
- 2. Given a **digitized waveform**, find the associated charge *q*:

$$\chi^{2}(\alpha) = \sum_{i=1}^{N} \left(\frac{y_{i} - \alpha w_{i}}{\sigma_{i}} \right)^{2}$$

$$\rightarrow \frac{d\chi^2}{d\alpha} = 0 \iff \alpha = \frac{\sum_{i=1}^{N} \frac{y_i w_i}{\sigma_i^2}}{\sum_{i=1}^{N} \frac{w_i^2}{\sigma_i^2}} \implies q = \alpha q_{ref}$$

Rudolph Rogly - TIPP 2023

Charge linearity: < 1.2 % for all charges **Charge resolution:**

< 1.2 % for charges > 10 p.e.

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

Expected charge [p.e.]

Pile-up & dead time

Rudolph Rogly - TIPP 2023

Capability to reconstruct events separated down to **30 ns** (intrinsic dead time).

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

I. Physics motivation

II. ASIC design

III. Characterization measurements

IV. Latest upgrades and prospects

Conclusions

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

HKROC R&D

HKROC0	
2021/12	

4 versions of the packaging ASIC + acquisition board so far, with:

✤ 2 ASIC versions: 1. HKROCO. 2. HKROC1b.

✤ 2 board versions:

- 1. Flip chip on mezzanine daughter board (one conductive layer).
- 2. BGA package on mother acquisition board (two conductive layers).

For cross-talk mitigation (2023).

Mezzanine

on mezzanine

PMT readout of Cherenkov-based experiments

Close cross-talk coupling suppression

Positive coupling \rightarrow Importance of the **board stack-up**.

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Rudolph Rogly - TIPP 2023

September 5th, 2023

Close cross-talk coupling suppression

HG immunity to coupling \rightarrow **Fake triggers** due to coupling can be **vetoed by FPGA**.

In acquisition board v2 (2024), coupling fully suppressed with splitting into more layers.

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

Diffuse cross-talk coupling mitigation

Negative coupling:

- \rightarrow Comes from the bias, reference voltage shared by all channels.
- ➡ Significant work on the ASIC design (decoupling capacitances) from HKROC0 to HKROC1b.

 \rightarrow Diffuse cross-talk divided by a factor 3.

Charge reconstruction performance not impacted.

Amplitude [ADC] -7 -5 -3 0.02% coupling on HG -4 200 500 0 100 300 400 600 Time [ns]

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

POLYTECHNIQUE DE PARIS

- I. Physics motivation
- II. ASIC design
- **III. Characterization measurements**
- IV. Latest upgrades and prospects Conclusions

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Physics constraints	Electronics requirements	HKROC features
Low power consumption	< 1 W / channel	10 mW / channel
Detect synchronous & asynchronous events	Auto-triggering capabilities	
Detect close supernova without event loss	Channel dead time < 1 µs	Dead time ~30ns Hit-rate with 100% efficiency: 950 kHz (SN mode
Low energy events detection	Detection threshold: 1/6 p.e.	
Detection of events from the MeV to the TeV	Dynamic range up to 1250 p.e.	
Electronics time resolution < PMT time resolution (1.3 ns)	Time resolution < 300 ps for 1 p.e.	~150 ps for 1 p.e.
Excellent energy reconstruction capability	Charge linearity & resolution ~1%	

Paper in progress, based on HKROC v1b performance.

HKROC is an extremely precise & versatile waveform digitizer. We provide a full HKROC-based ASIC + board to the community, adaptable to large PMTbased experiments.

> HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Rudolph Rogly - TIPP 2023

1p.e. ↔ 2pC

September 5th, 2023

POLYTECHNIQUE DE PARIS

HKROC on Mezzanine daughter board

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Hyper Kamiokande PMTs

PMT Properties	Super-K	
Dynode structure	Venetian blind	ſ
<u>Q</u> uantum <u>E</u> fficiency (at 390 nm)	≈ 22%	
<u>C</u> ollection <u>E</u> fficiency (at 10 ⁷ gain)	≈ 7 3%	
<u>H</u> it <u>E</u> fficiency (at 1/4 p.e. threshold)	≈ 72%	
Detection <u>E</u> fficiency (QE × CE × HE)	≈ 12% ×≈	2
Time resolution (TTS for 1 p.e.)	≈ 6.7 ns (σ ≈ 3.4 ns)	
Charge resolution	≈ 60%	
Dark rate	≈4 kHz	

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Hamamatsu R12860-HQE

Better vertex reconstruction

Better energy reconstruction

Hyper Kamiokande PMTs

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Rudolph Rogly - TIPP 2023

HKROC performance using PMT

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Rudolph Rogly - TIPP 2023

September 5th, 2023

From single-layer to multi-layer front-end board

Mezzanine daughter board on mother board

NFG

CIERCIS

N2P3

Rudolph Rogly - TIPP 2023

BGA on mother board

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

sh

POLYTECHNIQUE DE PARIS

From single-layer to multi-layer front-end board

BGA on mother board

Rudolph Rogly - TIPP 2023

N2P3

MFGA

CLEAR

	Surface
	SOLDERMASK_TOP Mask 15 um
1	TOP Conductor 15 um
2	DRILL1 Dielectric 30 um
3	C2 Plane 15 um
4	DRILL2 Dielectric 30 um
5	C3 Conductor 12 um
6	CORE Dielectric 200 um
7	C4 Plane 12 um 4
8	DRILL3 Dielectric 30 um
9	C5 Plane 15 um
10	DRILL4 Dielectric 30 um
11	BOTTOM Conductor 15 um
	SOLDERMASK_BOTTOM Mask 15 um
	Surface

sh

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Close Crosstalk Matrix - HKROC v1b + BGA

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

CIERCIS

N2P3

MFGA

Rudolph Rogly - TIPP 2023

MG0 LG0 HG1 MG1 LG1 HG2 MG2 LG2 HG3 MG3 LG3 \bigcirc HG4 MG4 \bigcirc HG5 LG4 MG5 LG5 HG6 MG6 LG6 HG7 MG7 LG7 HG8 MG8 LG8 OD0 OD1 OD2 OD3 OD4 OD5 OD6 OD7 OD8

September 5th, 2023

Ish

POLYTECHNIQUE DE PARIS

Linearity measurements - Close cross-talk

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Linearity measurements - Diffuse cross-talk

CIERCIAL

Diffuse cross-talk matrix \circ ω -2 9 channel σ 12 -6 Readout 15 -8 18 21 - -10 24 -12 15 18 21 24 12 9 3 6 Injection channel

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

September 5th, 2023

POLYTECHNIQUE DE PARIS

Diffuse-cross talk signal

Rudolph Rogly - TIPP 2023

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Charge reconstruction & Diffuse cross-talk

- The same linearity and resolution as without XT ٠

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

True charge [p.e.]

September 5th, 2023

Noise trigger rate

20 15 10 10 5 0 0.08 0.10 0.12 0.12

HKROC : a modern front-end ASIC for the PMT readout of Cherenkov-based experiments

Rudolph Rogly - TIPP 2023

Noise trigger rate (acq_time = 60.0s)

September 5th, 2023