The X-rays detecting system of the FAMU Experiment for the measurement of the muon transfer rate to carbon

> TIPP 2023 Conference 04-09 September 2023

Simone Monzani For the FAMU analysis team Università di Udine

Outline

- Motivation
- The FAMU Experiment
- The X-rays detecting system
- Performances
- Measurement of the transfer rate from μp to carbon
- Conclusions

FAMU: Fisica degli Atomi Muonici (Physics with muonic atoms)

FAMU: Fisica degli Atomi Muonici (Physics with muonic atoms)

- HFS comes from the interaction between the magnetic moment of the muon and the proton

- This enlights the magnetic structre of the proton

Target range of 20 days of data taking (0.36 nm centered in the weighted mean of the 3 measurements) 3

FAMU method and workflow

RIKEN RAL facility

Rutherford Appleton Laboratory – Oxfordshire UK The brightest pulsed muon beam facility in the world

Experimental setup

The X-rays detection system

LaBr3(Ce): fast timing X-rays detectors

- up to 3-5% energy resolution (multiple X-rays and electrons are generated due to the muon interaction with matter);

- up to 500 ps timing resolution (the transfer mechanism from μ hydrogen to the carbon occurs in hundreds of nanoseconds);

- small signal duration (to avoid pile-up);
- to be as linear as possible in pulsed high rate conditions;
- high efficiency in the 50-200 keV energy range (signal region);
- cover a large solid angle (X-rays emission by the target is isotropic);
- good over time stability.

Photomultiplier (PMT) guarantees the timing specification preserving the energy resolution and it can be used in high rate applications.

2.5 x 2.5 cm (diameter x thickness) cylindrical shape

crystals coupled with HAMAMATSU R11265U-200 PMT

Acquisition method

At each trigger we acquire a window of 10 microsecond Produce μp 's and wait for their thermalization (about 150 ns) Study the time evolution of Carbon X rays in the delayed region for extracting the transfer rate to carbon

Detectors waveform

For the signal amplitude detector signals are fitted and the preliminary cut is done through the study of the derivative of the waveform

- Rise time is very fast equal to 10 ns
- Decay time is around 30 ns
- Baseline is constant in time and no relevant background is present
- No undershoot is present
- Pile-up is solved modeling the single pulses with Landau functions

Prompt muonic X-rays distribution

- Selection cuts were applied to clean the sample

- 6 emission lines are clearly visible

- Aluminium and Nichel are well evident and used for the detector calibration

- The single fit is converging in all the detectors

- Resolution ranges between 10 and 30%

- Increasing slope at low energy is due to the muon spill

- Background is mainly due to Bremsstrahlung

Energy calibration curve

- Single fit applied on prompt and delayed signal, error has been estimated as the variation of the mean value of the fit in different ADC ranges

- Higher density of points in our region of interest

LaBr6

ADC

600 800 1000 1200 1400 1600 1800 2000 2200 2400

Efficiency

Efficiency always higher than 95% for all detectors in the time region selected for extracting the transfer rate to carbon

Muon transfer rate to carbon

Transfer rate measured with different temperatures

- Hydrogen and CH_4 gas mixture, with a nominal concentration of CH_4 equal to 0.3%
- Gradual cooling down from room temperature (300 K) to 197 K
- 197 K is the lowest limit in order to avoid condensation

Example of signal and background at 197 K

Example from all detectors in a time between 1552 and 1691 ns after trigger

- Signal is well visible confirming the high performances of the X-rays detecting system
- Distributions are corrected by efficiency and livetime
- Resolution of the k_{α} ranges between 25% and 40% (acceptable considering the low energy region and similar to the low energy prompt ones)
- Background is estimated from the hydrogen only sample

Carbon X-rays per time interval

Carbon transfer rate as a function of temperature

16

Carbon and oxygen transfer rate temperature

Conclusions

- This recent result confirms the fitness of the detection system in the pulsed intense muon beam;

- Prompt and delayed signals are clear with enough accuracy and precision to be suitable for a fine calibration

- The LaBr technology show an efficiency higher than 95% and a livetime higher than 99% in the whole signal region

- The detector high performances let the measurement of the carbon signal well evident above the background

- This allows us to measure the carbon transfer rate and to compare it with the previous results for oxygen;

- New Data taking on progress with laser and an improvement of this technology for the determination of the HF splitting.

Back-up

Energy distribution

Delayed distribution for detector 6

10 logarithmic time after trigger intervals

- 1552<t<1691
- 1691<t<1844
- 1844<t<2009
- 2009<t<2190
- 2190<t<2387
- 2387<t<2601
- 2601<t<2835
- 2835<t<3089
- 3089<t<3367
- 3367<t<3670
- Gaussian+exponential fit around the transition energies
- The exponential fit is not fundamental

Time dependency

C 75 keV, to check the time dependency with all detectors

ADCTimeD

Efficiency

Calibration curves

Time interval 2

Normalization: 200-400 keV

Time intervals at 197 K

Distributions are corrected by efficiency and livetime (almost 100% in the delayed region)

Time intervals at 197 K

Distributions are corrected by efficiency and livetime (almost 100% in the delayed region)

Signal+background

Background

Efficiency

Detector 1

Efficiency

Detector 5

- Very frequent and several reconstructed pulses
- This does not affect signal (50-100 keV is fully efficient)

Livetime

Livetime always higher than 99% for all detectors in the time region selected for extracting the transfer rate to carbon

Counts per time interval

Overview of next data taking

- The same procedure used for oxygen is repeated for the laser and no laser data samples

- The signal is the difference of the two integrals of laser and no laser data

Expected systematics

- Detector gain drift (expected 30 days acquisition time), change of the position of the peaks and consequently of the range of the integral;

- Detector efficiency

- Pressure of the target, a lower pressure means that less muons are captured and it affects also the transfer rate (phi parameter);

- Number of muons

- Laser energy stability, different probability of transition
- Length of the measurement;