

SpecMAT, the active target for nuclear transfer reactions studies at ISOLDE, CERN

Oleksii Poleshchuk TIPP2023 Cape Town, 8 September 2023

Outline

Motivation to build SpecMAT and its overview

Characterisation of the SpecMAT active target

A (d,³He) reaction for SpecMAT

KERN- EN STRALINGSFYSICA

Motivation and Overview

Physics motivation

Main goal: to study nuclei far from stability using transfer reactions.

Z=82

N=82

Major challenges:

N=126

- Low production rates of RIBs
- **Inverse kinematics** of the nuclear reaction.

Possible solution:

• A detector with high efficiency and good resolution

N, number of neutrons

Z=28

N=28

N=20

Z=20

The CERN accelerator complex Complexe des accélérateurs du CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator //

n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

7 ISS = ISOLDE Solenoidal Spectrometer

KU LEUVEN

KERN- EN STRALINGSFYSICA

KU LEUVEN

Characterisation of the SpecMAT active target

Characterisation of the array with 30 detectors, Measurement vs G4

GET

GEANT4

Linear source (Experimental condition)

Characterisation of the array with 45 detectors, G4

GEANT4

SPECMAT

KERN- EN STRALINGSFYSICA

SpecMAT field cage

SpecMAT field cage

Measured α -particle track in Ar95%CF₄5% @ 0.4mbar

Measured α -particle spectra in Ar95%CF₄5% @ 0.4mbar

O. Poleshchuk, R. Raabe, et.al., NIM A "The SpecMAT active target" Volume 1015, 1 November 2021, 165765

Offline tests of the SpecMAT active target in ISS 2022 A 4-alpha source was used for the

Ar(90%)CF₄(10%)

Detector configuration		Pressure of ArCF4(10%), mbar		
3 sectors + scint. in 2.5T				
3 sectors + scint. in 0T		100 / 250 / 350		
Pressure , mbar	¹⁴⁸ Gd 3182 keV	²³⁹ Pu 5155 keV	²⁴¹ Am 5488 keV	²⁴⁴ Cm 5805 keV
	Range, mm			
100	190	369.7	404.496	438.848
250	76.84	147.9	161.797	175.537
350	54.73	105.63	115.568	125.38

characterisation: ¹⁴⁸Gd, ²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm

Tests of the SpecMAT active target in ISS

500 1000 1500 2000 Energy (a.u.)

SpecMAT installed in ISS

Measured α-particle track in B=2.5T

Tests of the SpecMAT active target in ISS

Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar)

500 1000 1500 2000 Energy (a.u.)

Comparison of the SpecMATscint G4 simulation with preliminary analysis of the measurement (Ar90%CF₄10% @ 250 mbar)

Online commissioning of SpecMAT at HIE-ISOLDE 2023

²²Ne @ 7.58 MeV/u on **D₂ @ 800 mbar**

8 μ m Mylar window \rightarrow Beamline 8×10⁻⁸ mbar | Detector 800 mbar

Main reaction branches expected to observe:

- ²²Ne(d,d)
- ²²Ne(d,p)
- ²²Ne(d,³He)
- ²²Ne(d,t)

KU LEUVEN

Physics perspectives

Simulation of a ⁷⁰Zn(d, ³He)⁶⁹Cu reaction

Physics case

Physics case

Shell structure of odd Cu isotopes via nucleon transfer reactions on Zn:

- ⁷⁰Zn(d,³He)⁶⁹Cu
- ⁷²Zn(d,³He)⁷¹Cu
- ⁷⁴Zn(d,³He)⁷³Cu
- ⁷⁶Zn(d,³He)⁷⁵Cu •

p_{1/2}

50

(b) proton SPE of Ni isotopes

Ν

P3/2

erc

40

Z, number of protons

-10

-20

Cross section data from [P. Morfouace

https://doi.org/10.1103/PhysRevC.93.064308], DWBA by J.C. Yang

Proposing a new analysis method

4T no MICROMEGAS binning

Excitation spectra obtained with the new analysis method

Analysis based on (full+partial)-track length Gating on the gamma-ray spectrum

Analysis based on (full+partial)-track length Gating on the gamma-ray spectrum

erc

Analysis based on (full+partial)-track length Gating on the gamma-ray spectrum

erc

Summary

- ✓ The SpecMAT active target was designed, built and tested.
- \checkmark The active target was characterised in 0T and in 2.5T.
- An experimentally verified set of simulations was developed.
- A novel analysis method of the spiral tracks was proposed.
- ✓ Online commissioning of the detector with a ²²Ne beam was successful.
- We are upgrading the detector with THGEMs and preparing to the first experimental campaign with exotic RIBs.

Thank you for your attention!

Backup slides

⁷⁰Zn(d, ³He)⁶⁹Cu--9.5MeV/u--2.5T--D₂@1bar

DWBA by B. Kay

38

Measurement vs G4 α -particle length spectra

erc

European Research Counc

0T with MICROMEGAS binning Track parameters (θ , L) from fitting

4T no MICROMEGAS binning Track parameters from G4

(mm)

0T with MICROMEGAS binning Track parameters (θ , L) from fitting

4T no MICROMEGAS binning Track parameters from G4

θ 3He Lab (deg)

0T with MICROMEGAS binning Track parameters (θ , L) from fitting

4T no MICROMEGAS binning Track parameters from G4

SPECMAT

θ 3He Lab (deg)

OT with MICROMEGAS binning

4T no MICROMEGAS binning

Analysis based on full-track length Excitation spectra

erc