

Electron transport measurements in Xenoscope, a DARWIN Demonstrator 10.1140/epjc/s10052-023-11823-1

Yanina Biondi, **Karlsruhe Institute of Technology**, on behalf of the Xenoscope team at the Universität Zürich

TIPP Conference, 6th September 2023

Liquid Xenon Time Projection Chambers

Liquid Xenon Time Projection Chambers

Liquid Xenon Time Projection Chambers

Next Generation LXe TPCs

Dark Matter

- Supernova neutrinos
- Multi-messenger astrophysics

TIPP, Cape Town, 6th September 2023, <u>yanina.biondi@kit.edu</u>

- Spin-independent
- Spin-dependent

Neutrino Nature

- Neutrinoless double beta decay
- Double electron capture
- Magnetic Moment

Cosmic Rays

• Atmospheric neutrinos

The DARWIN Observatory

[JCAP 11, 017 (2016)]

TIPP, Cape Town, 6th September 2023, <u>yanina.biondi@kit.edu</u>

Precise models of electron transport in liquid xenon

Xenoscope, a demonstrator for DARWIN

- Facility located at the University of Zurich
- 400 kg of LXe
- Drift electrons over 2.6 metres
- Study properties such as electron transport and light attenuation in LXe
- Test different photosensor technologies

First phase: operation of a 53 cm Purity Monitor

CIM

 \sim

S

X

4

cm

23

TPC phase

- Field cage of five modules
- Stainless steel ring supports
 six PAI pillars that hold the
 field-shaping rings in place
- 173 oxygen-free copper rings
- Photosensor array

Ξ	
ເ	5
$\boldsymbol{\mathcal{C}}$	2
<u></u>	H
$\boldsymbol{\wedge}$	

Purity monitor phase

- Measures the concentration of electronegative impurities diffused in the LXe
- No photosensor instrumentation
- Troubleshooting the purification system
- Benchmark the facility subsystems

Electron lifetime in LXe TPCs

- •The electrons produced in the interaction might not reach the gas phase
- •Impurities diffused in the xenon compromise the signal quality

$$N(t) = N_0 \ e^{-t/\tau}$$

 τ : electron lifetime

LXe needs to be continuously purified

Purity monitor concept

The path of electrons in a purity monitor:

- to the lamp's pulse
- The electrons drift from G_C to G_1 by an extraction field, \overrightarrow{E}_1 • Their drift induces a current in G_C

- Photons are generated via the photoelectric effect with a width proportional

Purity monitor concept

- They traverse the screening grid G₁ and stop inducing a current on G_C
- Drifted towards G_2 with the drift field, \vec{E}_2
- Some electrons are captured by electronegative impurities
- Electrons traverse the screening grid G₂ and are accelerated towards G_A with the collection field \vec{E}_3

Purity monitor in Xenoscope

Electron lifetime results

Data acquired at 177 K with three gas speeds in the recirculation loop: 30, 35 and 40 slpm for 343 kg of xenon over 88 days

Model of the impurity concentration in the gas and liquid phase adapted [1,2]

TIPP, Cape Town, 6th September 2023, <u>yanina.biondi@kit.edu</u>

800

700

600

500

300

Prediction with higher recirculation speeds and purification of the gas phase

Electron transport: Drift velocity

TIPP, Cape Town, 6th September 2023, <u>yanina.biondi@kit.edu</u>

From our experimental data we can obtain the drift velocity, as

$$v_{\rm d} = d_2/t_2$$

And the dependence on the electric field is usually included in the electron mobility term μ

$$v_{\rm d} = \mu E_{\rm d}$$

But what behaviour should we expect? Can we learn something about systematics and dependences from transport models?

Results on drift velocity

$$v_{\rm d} = \mu E_{\rm d}$$

Interpretation of drift velocity values

No clear trend on the dependence with temperature, only parametrising previous measurements

- Molecular solutes introduce scattering centres
- Electrons can lose energy by inelastic collisions more efficiently than with xenon atoms

Results on longitudinal diffusion

spread in time of the signals

Fast response of the trans-impedance preamplifiers allow us to measure precisely the

- *t*₁: extraction region
- *t*₂: drift region
- *t*₃: collection region

From here we can extract:

$$\sigma_L^2 = \sigma^2 - \sigma_0^2$$

$$D_L = \frac{d^2 \sigma_L^2}{2t^3}$$

500

Longitudinal diffusion

17

Results on longitudinal diffusion

Thermal

$$D_L = \frac{kT}{e} \left(\frac{\mu}{\mu} + \frac{E}{\partial \mu} \frac{\partial \mu}{\partial E} \right)$$
Field dependence
$$\frac{D_L}{D_T} = 1 + \frac{E}{\mu} \frac{\partial \mu}{\partial E}$$

18

Upgrade and future plans

Extension to a 2.6 m TPC, Light readout with a top array comprised of tiles of SiPM, Transversal diffusion measurements, where literature is scarce

SiPM array of Xenoscope, a full-scale DARWIN vertical demonstrator, **R.** Peres on behalf of Xenoscope team

Upgrade and future plans

- TPC for studies of liquid xenon properties and high voltage delivery in liquid xenon
- Study of type of discharge: bubble streamers, cosmic rays
- Continue studies on liquid xenon properties and their relation with thermodynamical parameters and purity composition
- Synergies with different institutes inside KIT and universities (University of Zürich, University of Freiburg)

XLZD Consortium

101 PIs from XENON + LZ + DARWIN signed MoU, July 2021 To become formal collaboration in case of positive P5 funding decision in US

- We aim to design and build a **single**, common **multi-ton** experiment.
- Current detectors LZ and XENONnT have the same goals but differ in some technologies
- Explore and select the best option from both worlds, **strengthening** our R&D efforts by **combining** ideas and resources

Conclusions

- Successfully operated a 53 cm purity monitor in Xenoscope filled with 343 kg of xenon
- Continuously purification over 88 days, which allowed electron transport measurements, i.e. drift velocity and longitudinal diffusion
- Our results and feedback prompted a drastic change in the way NEST was modelling diffusion, and their models were updated
- Can temperature effects alone explain the differences in the acquired drift velocity data between experiments?
- The 'cold' and 'hot' benchmarks are starting to appear in the discussion for models in NEST
- Future upgrades of the detector and newer setups can provide more information on liquid xenon properties relevant to large-scale TPCs

Conclusions

TIPP, Cape Town, 6th September 2023, <u>yanina.biondi@kit.edu</u>

Thank you for your attention!

[1] Z. Greene, The XENON1T Spin-Independent WIMP Dark Matter Search Results and a Model to Characterize the Reduction of Electronegative Impurities in its 3.2 Tonne Liquid Xenon Detector. PhD thesis, Columbia University, 2018. 10.7916/D87M1RTN. [2] G. Plante, E. Aprile, J. Howlett and Y. Zhang, Liquid-phase purification for multi-tonne xenon detectors, Eur.

Phys. J. C 82 (2022) 860, [2205.07336].

24