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Liquid	Xenon	Time	Projection	Chambers
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DARWIN	Goal:	Reach	the	neutrino	
fog

LXe	experiments	were	successful	
at	establishing	limits	spanning	a	
wide	range	of	WIMP	candidate	
masses

Ricardo	Peres,	EPS-HEP	2023
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Ricardo	Peres,	EPS-HEP	2023

DARWIN	Goal:	Reach	the	neutrino	
fog

A	next-generation	liquid	xenon	observatory	for	dark	matter	and	
neutrino	physics,	Community	paper	(XENON+LZ+DARWIN),	2023,	J.	

Phys.	G:	Nucl.	Part.	Phys.	50	013001	
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Next	Generation	LXe	TPCs
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Supernova
� Early alert
� Supernova neutrinos
� Multi-messenger astrophysics

Dark Matter
� Dark photons
� Axion-like particles
� Planck mass

WIMPs
� Spin-independent
� Spin-dependent
� Sub-GeV
� Inelastic

Neutrino Nature
� Neutrinoless 

double beta decay
� Double electron 

capture
� Magnetic Moment

Cosmic Rays
� Atmospheric 

neutrinos

Sun
� pp neutrinos
� Solar 

metallicity
� 7Be, 8B, hep
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The	DARWIN	Observatory
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Dual-phase	Time	Projection	Chamber	(TPC)	

50	t	total	(40	t	active)	of	liquid	xenon	(LXe)	

Drift	\ield	200	V/cm

DARWIN:	towards	the	ultimate	dark	matter	detector	

[JCAP	11,	017	(2016)]

2.6	m	TPC

Drift	time	=	distance/velocity

Drift	time	 Accidental	coincidences

Single	vs	multi	site	discrimination

Drift	time	 Diffusion
Discrimination	
power	of	energy	
depositions

Precise	models	of	electron	transport	in	liquid	xenon
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Xenoscope,	a	demonstrator	for	DARWIN
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• Facility	located	at	the	University	of	Zurich	

• 400	kg	of	LXe	

• Drift	electrons	over	2.6	metres	

• Study	properties	such	as	electron	transport	
and	light	attenuation	in	LXe	

• Test	different	photosensor	technologies	
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First	phase:	operation	of	a	53	cm	Purity	Monitor
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TPC	phase	

• Field	cage	of	\ive	modules	
• Stainless	steel	ring	supports	
six	PAI	pillars	that	hold	the	
\ield-shaping	rings	in	place	

• 173	oxygen-free	copper	rings	
• Photosensor	array

Purity	monitor	phase

• Measures	the	concentration	of	
electronegative	impurities	
diffused	in	the	LXe	

• No	photosensor	
instrumentation		

• Troubleshooting	the	
puri\ication	system	

• Benchmark	the	facility	sub-
systems
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Electron	lifetime	in	LXe	TPCs
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•The	electrons	produced	in	the	interaction	might	not	reach	the	gas	phase	

•Impurities	diffused	in	the	xenon	compromise	the	signal	quality
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LXe	needs	to	be	continuously	puri\ied
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		The	path	of	electrons	in	a	purity	monitor:	

• Photons	are	generated	via	the	photoelectric	effect	with	a	width	proportional	
to	the	lamp’s	pulse	

• The	electrons	drift	from	GC		to	G1	by	an	extraction	\ield,	 	

• Their	drift	induces	a	current	in	GC

⃗E 1

Purity	monitor	concept
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Purity	monitor	concept
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• They	traverse	the	screening	grid	G1	and	stop	inducing	a	current	on	GC	

• Drifted	towards	G2	with	the	drift	\ield,	 	

• Some	electrons	are	captured	by	electronegative	impurities	

• Electrons	traverse	the	screening	grid	G2	and	are	accelerated	towards	GA	with	the	
collection	\ield	

⃗E 2

⃗E 3

G2

GA

GC

G1

FSR

3

2

1

⃗Ed

Fibre
Lamp

e−e−

e−e−

e−e−

QC

QA

LXe

mailto:yanina.biondi@kit.edu


TIPP, Cape Town, 6th September 2023, yanina.biondi@kit.edu 

Purity	monitor	in	Xenoscope
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Anode

Cathode
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Electron	lifetime	results
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Data	acquired	at	177	K	with	three	gas	speeds	
in	the	recirculation	loop:	30,	35	and	40	slpm	
for	343	kg	of	xenon	over	88	days	

Model	of	the	impurity	concentration	in	the	
gas	and	liquid	phase	adapted	[1,2]
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Prediction	with	higher	recirculation	speeds	and	

puri\ication	of	the	gas	phase
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Electron	transport:	Drift	velocity
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vd = d2/t2

From	our	experimental	data	we	can	obtain	the	drift	velocity,	as	

But	what	behaviour	should	we	expect?	Can	we	learn	something	about	
systematics	and	dependences	from	transport	models?

⃗vd

⃗vi

vd = μEd

And	the	dependence	on	the	electric	\ield	is	usually	included	in	
the	electron	mobility	term	μ
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Results	on	drift	velocity
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μhot

μcold

vd = μEd

μcold =
2
3 ( 2

π me kB T )
1
2

e
λ
v

μhot =
4 e λ

3vπ1/2m*e

Two	different	regimes:	

λ =
1

∑i σi(ϵ) ni

N

mean	free	path

electron	effective	
mass	in	the	liquid

cross	section	with		particles	in	the	liquid
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Interpretation	of	drift	velocity	values
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v =
2eEvd

mev∑i niσi(ϵ)Λi(ϵ)
+

3kT
me

Momentum	transfer

NEST	models

•Molecular	solutes	introduce	
scattering	centres	

•Electrons	can	lose	energy	by	
inelastic	collisions	more	ef\iciently	
than	with	xenon	atoms

vd =
eE
mv

1
∑ niσ(ϵ)i

No	clear	trend	on	the	dependence	with	temperature,	only	
parametrising	previous	measurements
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Results	on	longitudinal	diffusion
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σ
σ0 σ2

L = σ2 − σ2
0

Fast	response	of	the	trans-impedance	preampli\iers	allow	us	to	measure	precisely	the	
spread	in	time	of	the	signals

From	here	we	can	extract:

DL =
d2σ2

L

2t3

Longitudinal	diffusion	

:	extraction	region	

:	drift	region	

:	collection	region

t1
t2
t3
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Results	on	longitudinal	diffusion
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DL =
kT
e (μ + E

∂μ
∂E )

DL
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Thermal

Field	dependent
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Upgrade	and	future	plans
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SiPM array of Xenoscope, a full-scale DARWIN vertical demonstrator, 
R. Peres on behalf of Xenoscope team

Extension	to	a	2.6	m	TPC,	Light	readout	with	a	top	array	comprised	of	tiles	of	SiPM,		
Transversal	diffusion	measurements,	where	literature	is	scarce

UZH/Ursula Meisser
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Upgrade	and	future	plans
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• TPC	for	studies	of	liquid	xenon	properties	and	high	voltage	
delivery	in	liquid	xenon	

• Study	of	type	of	discharge:	bubble	streamers,	cosmic	rays	

• Continue	studies	on	liquid	xenon	properties	and	their	
relation	with	thermodynamical	parameters	and	purity	
composition	

• Synergies	with	different	institutes	inside	KIT	and	
universities	(University	of	Zürich,	University	of	Freiburg)
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XLZD	Consortium
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101 PIs from XENON + LZ + DARWIN signed MoU, July 2021 
To become formal collaboration in case 
of positive P5 funding decision in US

• We	aim	to	design	and	build	a	single,	common	multi-ton	experiment.		
• Current	detectors	LZ	and	XENONnT	have	the	same	goals	but	differ	in	some	technologies	
• Explore	and	select	the	best	option	from	both	worlds,	strengthening	our	R&D	efforts	by	combining	
ideas	and	resources
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Conclusions
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• Successfully	operated	a	53	cm	purity	monitor	in	Xenoscope	\illed	with	343	kg	of	xenon	

• Continuously	puri\ication	over	88	days,	which	allowed	electron	transport	measurements,	i.e.	
drift	velocity	and	longitudinal	diffusion	

• Our	results	and	feedback	prompted	a	drastic	change	in	the	way	NEST	was	modelling	diffusion,	
and	their	models	were	updated	

• Can	temperature	effects	alone	explain	the	differences	in	the	acquired	drift	velocity	data	
between	experiments?	

• The	‘cold’	and	‘hot’	benchmarks	are	starting	to	appear	in	the	discussion	for	models	in	NEST	

• Future	upgrades	of	the	detector	and	newer	setups	can	provide	more	information	on	liquid	
xenon	properties	relevant	to	large-scale	TPCs
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Conclusions
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Thank	you	for	your	attention!
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