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e Particle flux : LHC aims to operate with an higher
particle flux than the designed value (higher statistics
but challenging detector design and operation).

e Detector Plan : HGCAL, a sampling calorimeter, is
planned to be installed between 2026-28 replacing the
current ECal and HCal in the Endcaps region.

e Physics prospects : Vector Boson Fusion, boosted
topologies, narrow and merged jets.

e Challenges : High pileup (~200) and high radiation
dose (~2 MGy) [CMS-TDR-019].

e Parameters :

- 15< |n] <3.0

— CEE : 26 layers (R

— CEH : 21 layers (R
tiles with SiPM.

~ 1.5 m) with hexagonal Si wafers.
< 2.5 m) with Si wafers and Scintillator

— 5 dimensional measurements in (x, y, z, t, E)

e Source : CMS-TDR-019 and
https://hgcaldocs.web.cern.ch/

London CMS High Granularity Calorimeter (HGCAL)

e [source : CERN courier (link) ]

CMS
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https://hgcaldocs.web.cern.ch/
https://cerncourier.com/a/cms-has-high-luminosity-in-sight/
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HGCAL Detector Layout

Calorimeter endcaps:

* Coverage 1.5< | n|<3.0
* radiation tolerant

* high granularity

* precise hit/cluster timing

Enhanced capability for particle flow

reconstruction
Operation at -30°C

Philippe Bloch, On-detector integration, 2022

CE-E (Electro-magnetic)

Active: Silicon

Passive: Cu, CuW, Pb absorbers
13 double-sided layers (full silicon),
27.7 X,/ 1.6 A
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Beam direction

CE-H ( Hadronic)

Active: Silicon + Scintillator /

Silicon-photomultiplier
Passive: Steel absorbers
7 all-Si layers

21 layers, 9.4 A (total)

Values for both endcaps:

Silicon
*  620m? of silicon
+ 6Mchannels
+ 30k modules
.

0.5-1.1cm? per cell

Scintillator + SiPM
*  400m? of scintillator
* 240k tiles + SiPM
* 4000 boards
¢ 4-30cn® per tile

HGCAL design inspired by CALICE studies,
e.g. CAdioff et al 2013 JINST 8 P09001

e [source : The CMS High Granularity Calorimeter for the High Luminosity LHC by Moritz Wiehe in VCI 2022 (link) ]
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https://indico.cern.ch/event/1044975/contributions/4663656/attachments/2396116/4097005/HGCAL_VCI22_mw_HEPHY.pdf
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HGCAL Detector Layout : Silicon modules

Sensor cell contact  Bias voltage Guard ring contact

Sensor-PCB (‘Hexaboard’)

» Read-out (HGCROC) of sensor cells + bias supply

» Connects to motherboard for data transfer

Silicon sensor

Kapton sheet

* |solation to baseplate + bias supply to sensor back side
Baseplate

* Rigidity, contributes to absorber material
Hexaboard

Sensor

Kapton Stainless-steel clad

sheet Pb absorber
Stainless-steel clad

Culw

base plate

PCB motherboard
ASICs etc, ————
PCB sensor board ———|
Silicon /

CuW baseplate

Il

Cu cooling plate

e [source : The CMS High Granularity Calorimeter for the High Luminosity LHC by Moritz Wiehe in VCI 2022 (link) ]
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https://indico.cern.ch/event/1044975/contributions/4663656/attachments/2396116/4097005/HGCAL_VCI22_mw_HEPHY.pdf

Imperial College
London

( tifr

HGCAL Detector Layout : Scintillator 4+ SiPM

Scintillator tiles with SiPM readout used in low radiation regions (n>2.4)

* Require good MIP Signal/Noise after 3000fb*
* Tile size depends on radial-position (4cm? to 32cm?)
« Signal strength depends on tile and SiPM geometry — smaller tiles at lower radii

M SN at 3000 5

SSW e !
COMSSW I [CMS HGCAL TDR]

e [source : The CMS High Granularity Calorimeter for the High Luminosity LHC by Moritz Wiehe in VCI 2022 (link) ]
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Motivation of Muon Tomography in geometry

Muon Tomography with cosmic muons is a popular tool
— Scientific research (Detector alignments and other validations)

— Archaeological explorations (hidden chambers in pyramid)

— Mineral search (different angle of bending for different soil /rock composition)
— Security scans (illegal transport of high Z materials)

e Muons interact mostly through ionization with the materials and thus traverse the detector providing a consistent trace
which identified by a Landau distribution.

e Validation of detector geometry requires,
— energy and hit information,
— access to every corner of all the detector layers,
— repetitive studies for debugging,
— faster processing,
— low volume files.

Muon satisfies all above criteria compared to shower producing particles.
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Implementation in CMS software

To study the response of HGCAL to muons, which are Minimum lonizing Particles (MIPs) and deposit roughly the
same energy for a broad range of energies:

1. Study of energy loss dependence as function of thickness of depletion depth (120 pm, 200 pm, 300 pm).

2. Obtaining the image of each layer using muon hits overlayed with the pattern from sensor layout files.

1M events with two muons (u* + ) at constant pr (100 GeV/c) towards HGCAL (1.3 < |n| < 3.1) in +ve and -ve
z directions are simulated.

The energy loss stored in simhit array for a given cell are added for the in-bunch cell hits.

The energy loss distribution obtained for the cell with maximum deposited energy in a given layer is used for the
present study.
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idation :

v15 : Energy loss v16 : Energy loss

case study of muon energy loss
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Muon energy loss studies have been carried out for two geometry versions, namely v15 and v16.

The energy loss in Si wafers are shown in black color for v15(left) and v16(right).

The energy loss histograms for different depths of sensitive material, 120 pm, 200 um and 300 pm are shown in red,

green and magenta color, respectively.

In addition to the expected energy loss peaks as per thickness of the sensitive material, several anomalous peaks (shown

with blue arrow) for each of v15 and v16 geometries are noted.

Number of anomalous peaks for v15 and v16 are not the same.
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London Validation : muon energy loss (contd.)
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Energy loss for 120 um Si Energy loss for 200 um Si Energy loss for 300 um Si
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The energy loss of muons is shown for v15(top) and v16(bottom).
Surprisingly, we do not find any hits in the partial wafers corresponding to 200 and 300 pm in case of v16.

The energy loss peaks ~34 keV, ~60 keV and ~90 keV are observed to be in proportion with different thicknesses (120
pm, 200 pm, 300 pm).

The anomalous low energy peak with Si wafers of 120 and 200 pm thickness is ~20 keV and it is close to 2 keV for Si
wafers of 300 pm thickness.
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Hits in XY for layer 1 (-z side) BRIL[6.2.0.1] for layer 1

CMS Preliminary Simulation

-100 -
Bl si width 120 um

I si width 200 um

-150 i
[ si width 300 um

B T A N R S U P P
%B50 150 100 50 0 50 100 150 200

X (cm)

e The GEANT hit distribution in the XY plane for v16(left) is compared with the Technical drawing (right).

e Comparing the Si wafer pattern (with the help of overlay) shows the missing hits in partial wafers in the outer region,
namely the 300 pm partial Si wafers.
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Hits in XY for layer 1 (-z side) Hits in XY for layer 1 (-z side)

CMS Preliminary Simulation CMS Preliminary Simulation
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e The origin of the issues have been found to be a scale down factor applied for the partial wafers in v15 and an incorrect
definition of active width of the silicon in v16.

e The GEANT simhit distribution in the xy-plane of layer 1 of HGCAL before(left) and after(right) the fix.
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London Validation : HGCAL layer rotation
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Hits in XY for layer 28 (-z side) Hits in XY for layer 28 (-z side)

CMS Preliminary Simulation CMS Preliminary Simulation
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e The layers 28, 30, 32 of the HGCAL are rotated by 30° along the z-axis to reduce the dead area of the detector.
e The GEANT hit distribution in the XY plane for layer 28 (left), shows discrepancy.

e It was observed that the overlay was perfectly matching with the hits if it was rotated by —30° instead of 30° and
appropriated correction was made (right).
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London Validation : HGCAL module rotation
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Hits in XY for layer 1 (-z side) Hits in XY for layer 1 (-z side)

CMS Preliminary Simulation CMS Preliminary Simulation
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A module rotation of silicon wafers are applied in v17 for the proper implementation of technical design.
Missing hits in partial wafers are observed.
The issue was narrowed down to the bug in the validity check and the orientation of partial wafers.

After the correction GEANT simhit distribution showed that there was an issue with the orientation of the partial
wafers (right).
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Hits in XY for layer 47

hXYhits_layer_47
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London Validation : Hit occupancies in SiPM-on-tile

Hits in XY for layer 47

hXYhits_layer_47
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SiPM-on-tiles.

e Missing hits are observed in the inner rings.

_30—9»00 —200 100 0 100 200 3§JO

e Following a finding by the data quality monitoring (DQM) team of HGCAL, hit occupancies are studied for

e The issue was an incorrect scale conversion mm—cm in geometry definition.

o After the correction GEANT simhit distribution showed no issues for SiPM-on-tile modules (right).

CMS
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GenHits in layer 41 (z < 0.0 cm) RecHits in layer 41 (z < 0.0 cm)

- Valid detIDs: 200 um e - Valid detiDs: 200 um
[ vaic detiDs: 300 m [ vaic detiDs: 300 m
- Failed detiDs: 200 um : - Failed detiDs: 200 um
- Failed detIDs: 300 pm [l Faiec cetos: 300 um

T . T
Valid 200 um| |Valid 300 um ; Valid 200 um| |Valid 300 um

Entries 35481| | Entries 130032 7 & Entries 159223 | | Entries 108775

Failed 200 um| |Failed 300 um Failed 200 um| Failed 300 um

Entries  677| |Entries 188 Entries 16746| Entries 162
CMS Preliminary : CMS Preliminary
imulatign imulation,

n

26 -24 -22

o HGCAL DQM has reported a mismatch of the n — ¢ distribution of detector hits in simulation and reconstruction result.
e An high resolution muon tomography study found the origin of discrepancy is due to the unexpected detector hits.

e The unexpected hits are shown in brown and black color points for failed detector IDs.
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London Validation : Cassette shift
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Hits in XY for layer 47 (-z side)

CMS Preliminary Simulation
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e The GEANT simhit distribution in the xy-plane of HGCAL with 40 cm shift to cassette #1 along x-axis in layer 47.

e The black overlay represents the expected while the blue and pink dots showing the actual displacement.
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Summary

e We have demonstrated that muon tomography is an useful validation tool for complex
detector geometry.

— Incorrect definition of active thickness.

— Missing hits in partial wafers.

— Rotation of layers in opposite direction.
— Issues with module rotation.

— Scale conversion for SiPM-on-tile hits.

— Unexpected detector hits.

— Wrong cassette shifts.

e The tool is now an integral part of CMS software framework used for validation of
geometry.

e In future colliders, where complex detector system is envisaged, muon tomography could
play crucial role in geometry debugging.
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