LEGEND: Background-free hunt for the neutrinoless double-beta decay

Patrick Krause on behalf of the LEGEND Collaboration

patrick.krause@tum.de

Technical University of Munich School of Natural Sciences

07. September 2023 - TIPP2023

Searching for $0\nu\beta\beta$ with Germanium

58 Institutions, 12 Countries, 1 Goal:

Develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years

LEGEND-200

- 200 kg HPGe Detectors
- LAr instrumentation (Two fiber shrouds)
- Infrastructure of GERDA
- $T_{DP} \sim 1 \cdot 10^{27} \text{ yr}$
- < $2 \cdot 10^{-4}$ cts/(keV kg yr)

LEGEND-200: Commissioning

Nov 2020

Works in the cryostat

Mar 2021

Installation of new lock system

Start of cryostat filling

Installation of new Lock system

Jul 2021

Mechanics tests

Oct 2021

LAr instrumentation commissioning

Front end electronics commissioning

Glove Box installation

LEGEND-200: 60 kg test & special LAr calibration runs

P. Krause

LEGEND-200: 140 kg installation and commissioning

LEGEND

Oct 2022

LEGEND-200: 140 kg physics data taking

Mar 2023

- 101 detectors in 10 strings
- Electronics for full 200 kg installation available & tested
- DAQ & slow control fully available
- LAr instrumentation operational
- 130 kg operational. (12 detectors off due to hardware failure)
- So far: focus on analysis of BEGe & ICPC detectors
- PSD development for other detectors ongoing

Exp (kg yr)	BEGe	ICPC
10.1	2.1	8.0

LEGEND-200: After Quality Cuts

Today

- No unexpected background components
 - \circ ²³⁸U & ²³²Th decay chains, ⁴⁰K, ⁴²K
- Improved peak to Compton ratio
 - Reduces Compton continuum background
 - Higher detection efficiency due to larger mass detectors
- Higher rate from ²⁰⁸TI compared to GERDA
 - Expected -> more construction material
- Similar spectral shape

LEGEND vs. GERDA BEGe+ICPC

LEGEND-200: After LAr Cut

Today

550 500 ((Jk by)/ 450

400 x 250 x 250

200

After LAr cut:

- TI-208 peak is completely suppressed
- K-42 peak survives to < 20%

BEGe

after LAr

ICPC

- K-40 peak fully accepted
- Pure 2vbb
- Uniform detector rate

LEGEND-200: LAr Instrumentation, from a Veto to a full detector system

Today

- Depending on the interaction type (multi-site, single-site, or surface event), different A/E → Pulse shape discrimination
- PSD cuts multi-site and alpha events effectively
- More powerful due to higher MSE probability in larger ICPC detectors
- PSD suppression in physics data depends on actual background composition and location

LEGEND-200: First Background Index

P. Krause

Today

- Background in the ROI after analysis cuts:
 - Evaluated on first 10.1 kg yr of physics data compatible with LEGEND-200 goal
- Continue data taking
- New ICPC detectors currently in production

Early 2024

- Fix hardware issues
- Complete the array with remaining detectors

LEGEND-1000: Designed for an Unambiguous Discovery

- 1000 kg HPGe Detectors (ICPC)
- New cryostat at LNGS or SNOLAB
- $T_{DP} > 1 \cdot 10^{28} \text{ yr}$
- Background: <1x10⁻⁵ cts/(keV kg yr)
- Underground LAr reentrant tube in a atmospheric LAr cryostat
- Single string, modular approach
- Large-mass ICPC detectors: ~3 kg avg. mass

LEGEND-1000: Sensitivity

- LEGEND will span the inverted ordering and a large part of the normal ordering space
- Discovery sensitivity <18.4 meV for 12/15 calculations

LEGEND-1000: Designed for an Unambiguous Discovery

19

Conclusion

LEGEND-200

- Successful Commissioning of LEGEND-200
- First LEGEND-200 physics data
 - ✓ No unexpected background components
 - \checkmark LAr instrumentation and PSD work as expected
 - ✓ Evaluated on first 10.1 kg yr of physics data
 - ✓ Compatible with LEGEND-200 goal
- Early 2024 remaining detectors will be installed

legend-exp.org

LEGEND-1000

- Design for a a discovery
- Low risk scaling due to the experience from LEGEND-200
- R&D already underway
- Will cover full inverted mass ordering and large part of normal ordering

PSD in Detail

Wavelength Shifting Reflector

It restricts the LAr volume around the detectors.

Also shifts scintillation light to blue and reflects it back towards the LAr instrumentation Alphas

- High energy events are compatible with ²¹⁰Po
- Can not distinguish ²¹⁰Po (T_{1/2}~138d) from ²¹⁰Pb (T_{1/2}~22.3yr) supported ²¹⁰Po yet
- Weak evidence for ²²⁶Ra and ²²²Rn & ²¹⁸Po & ²¹⁴Po chain
- smaller contact surface to volume ratio \rightarrow Less alphas/kg in ICPC
- Less alphas in LEGEND compared to GERDA
 → successful detector handling procedures

[WIP]

Well described by expected contributions with current statistics

- Uniform germanium event rate
- No event "bursts"

No evident "hot-spots" in the array