CMS

@ irfu
_

Deep Learning techniques for energy clustering in
the CMS electromagnetic calorimeter

Polina Simkina
On behalf of the CMS collaboration

CEA IRFU

TIPP 2023
5 September 2023



Outline

1. Introduction to Graph Neural Networks (GNN)

2. SuperClustering reconstruction in ECAL
o Mustache algorithm

3. DeepSuperClustering model
o Model description and architecture

4. Performance

o Energy resolution

o Particle Identification



Introduction to Graph Neural

Networks



Neural Networks

Neural Networks are one of the widely used
algorithms.

The simplest neural network consists of

If the network has more than one hidden layer, it is called

o  Theinput vector is multiplied by a
resulting in an input to a new . This
process then can be successively repeated with new
layers (each time with a different weight matrix).

o  Theresult can be extracted from the output of the
last layer. It is compared with the “right” answer and
based on the loss function (e.g. Mean Squared Error)
the weights are adjusted using a method called
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Example of Deep Neural Network



Graph Neural Networks (GNNSs)

Type of neural network that can operate on and analyze
Unlike other types of networks GNN can be easily applied on sparse data.

A graph consists of (contain features of the object) and (reflect the relationship between the
nodes).

In GNNs the information can be shared between the neighbors:

o  The vector features of each node are transformed into “messages” (e.g. using dense layers) that are
sent to the neighbors (message-passing).

o Inthis way, . The process is carried out in
parallel and repeated several times.
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Source: Graph Neural Networks



https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html

SuperClustering in ECAL




Electromagnetic CALorimeter

Homogeneous calorimeter.
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EM object reconstruction in ECAL

Part of CMS reconstruction framework — Particle Flow

SuperClusters

Energy deposits left by particles in the PbWO,
crystals of the calorimeter.

Rechits are gathered together to form a
cluster that represents a single particle or
several overlapping particles.

Because of bremsstrahlung or photon conversion before the ECAL,
clusters have to be combined to form a SuperCluster.

Currently a geometrical algorithm (Mustache) is used, a Boosted
Decision Tree is applied for energy correction.

The energy of the initial particle can be reconstructed from a
SuperCluster.



Mustache SuperClustering
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https://iopscience.iop.org/article/10.1088/1748-0221/16/05/P05014

DeepSC model



GNN for ECAL SuperClustering

New algorithm for SuperClustering:

e Based on Graph Neural Network. It can receive and combine the
information from all the clusters in the window.

For the training and testing a dedicated Monte Carlo sample was
generated:

e Electrons and photons are generated uniformly in p_ = [1,100] GeV.

e PU uniformly distributed between [55,75] interactions is used.

windows around
seeds
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Windows are opened around all the clusters
with E;. > 1 GeV ( ).
o  Window dimensions are n-dependent.
o The model has to process each window
and give a prediction for it.
The for the model are:

o  Cluster information (energy, position, etc.)
o List of rechits for each cluster.
Summary window features.

The : cluster classification (in/out of
SC), window classification
(electron/photon/jet), energy regression.
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GNN for ECAL SuperClustering architecture
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Performance
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Performance: energy resolution vs. energy

Resolution of the reconstructed calibrated (Ec,;p) divided by the generated

particle (Eg.,) versus the transverse energy of the gen-level particle E.°*". ECAL energy is
combined with the track energy for doing the calibration.
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Performance: energy resolution vs. eta

Resolution of the reconstructed calibrated
particle

( Callb) divided by the generated

! | (Eg.,) versus the gen-lgvel particlg po_sition INg., |- ECAL energy is
combined with the track energy for doing the calibration.
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Performance: energy resolution vs. pileup

Resolution of the reconstructed calibrated

particle

combined with the track energy for doing the calibration.
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Particle identification

e Same network can be used to identify the type of the particle.

e An extra sample containing jets was generated (same energy/PU as for electron/photon sample): 25% of
energy in jets comes from photons but different topology between ECAL energy deposits coming from

prompt electrons/photons and from jets.

e In order to avoid performance degradation for electrons/photons in terms of cluster selection, Transfer
Learning was used to re-train only the ID part of the network.
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Performance: jet vs. photon

e ROC curve obtained from the discriminator for jet vs. photon for E.. = [40, 50] GeV (left).

e Summary performance obtained by calculating

energy ranges (right).
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for jet vs. photon discrimination for high energy.

e The output of the model can be used in the global event reconstruction of CMS.
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Performance: electron vs. photon

e ROC curve obtained from the discriminator for electron vs. photon for E.. = [40, 50] GeV (left).

e Summary performance obtained by calculating (AUC) for different
energy ranges (right).
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e AUC levels for photon vs. electron discriminator are ~63%.

e Only ECAL variables are used, can be beneficial when the track information is lost or not
reconstructed.



Conclusion

e New calorimeter reconstruction algorithm based on Graph Neural Networks,
DeepSC model, is presented.

e Outperforms the traditional approach in terms of energy resolution.

e DeepSC modelis also able to perform particle identification based solely on the
information from the ECAL.

o  Shows promising results for photon vs. jet discrimination.

o Electron vs. photon discrimination can be additionally used for the cases where the track
information is lost or not reconstructed.
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