

4 - 8 SEPTEMBER 2023

Overview of the ATLAS High-Granularity Timing Detector (HGTD): Project status and results

> Shahzad Ali Academia Sinica Taiwan

> > **UPAP**

On behalf of ATLAS HGTD group

- High Luminosity (HL)-LHC program
- Physics motivation for HGTD in ATLAS
- Introduction to HGTD
- HGTD Highlights
 - HGTD module
 - LGAD sensors
 - ASIC electronic
 - Demonstrator
 - Peripheral Electronics

High Luminosity (HL)-LHC program

Physics motivation for HGTD in ATLAS

High-Granularity Timing Detector (HGTD)

- The HGTD is being designed for operation with $\langle \mu \rangle = 200$ and a total integrated luminosity of 4000 fb⁻¹
 - Time resolution per track (hit):
 - 30-50 ps (35-70 ps)
 - Luminosity measurements, as luminometer
 - Goal for HL-LHC: 1% luminosity uncertainty
 - Approved by CERN LHCC in Sep-2019
- Two HGTD end-up disks installed in the gap between barrel and end-cap
- $z \sim \pm 3.5$ m from the nominal interaction point
- Total radius:11 cm < R < 100 cm
- Active region covering:

► $2.4 < \eta < 4.0$, 12 cm < R < 64 cm

- Radiation hardness requirements:
 - ► 2.5 x 10^{15} n_{eq}/cm² (w/ Safety Factor =1.5) for sensor
 - 2 MGy (w/ SF = 2.25 for electronics)

HGTD Module

- (PEB), a Printed Circuit Board (PCB) dedicated for power and readout
- Each module consists of two bump-bonded sensor+ASIC combinations, glued and wire-bonded to a module flex

• HGTD will have double-sided disks equipped with 8034 modules, surrounded by Peripheral Electronic Boards • Consists of a LGAD sensor (15×15 pads) interconnected to the **ALTIROC** readout chip through bump-bonding

Low Gain Avalanche Diode: Sensors

- LGAD sensors are an advanced type of silicon photodetector that harness the avalanche multiplication effect to amplify signals
- LGAD sensors operate in a low gain mode, ensuring linearity and reducing excess noise
- LGAD specifics for HGTD
 - \blacktriangleright 50 µm thick
 - Compromise between Landau fluctuations contributing to the time resolution etc
 - \blacktriangleright Pad size1.3 $\times 1.3$ mm²
 - Compromise between rise time, capacitance, occupancy
 - ▶ Signal level: 10 fC (w/20 gain) before and 4 fC (w/8 gain) after + irradiation

Sensor performance measurements: Testbeam

- Published paper on summarising the testbeam results
 - <u>C. Agapopoulou et al 2022 JINST 17 P09026</u>

• For more details about the latest test beam results please see Mei Zhao's talk on September 7 (Link)

Study of LGAD performance: Lab

- The target collected charge is 4 fC and time resolution of 50 ps for the HGTD
- performance at much lower bias voltages than non-carbon enriched sensors

Carbon enriched sensors (IHEP-IMEv2-W7Q2, FBK-UFSC-2.3-W19, USTC-IME-V2.0-W16) show stable

LGAD Single Event Burnout

- bias voltage
 - No issue if operated with lower voltage!
 - breakdown
- Confirmed & cross checked with R&D at CMS and RD50
- Bias voltage safe from SEB: $< 11 \text{ V/}\mu\text{m}$ (i.e. $\sim < 550 \text{ V}$ for 50 μm)

ATLAS HGTD Preliminary

• Single Event Burnout (SEB)- when heavily irradiated sensors (~ end-of-life 2.5 x 10^{15} n_{eq}/cm²) operated with high

• A single particle which deposits enough energy (~tens MeV) causes: conductive path leading to destructive

ALTIROC: LGAD's ASIC

Requirements:

- Match timing performance of LGAD
- Small jitter: 25 ps at 10 fC, < 70 ps at 4 fC
- Radiation hard

Status:

- ALTIROC 0 and ALTIROC 1: analog front end test (<u>C. Agapopoulou et al 2023 JINST 18 P08019</u>)
- ALTIROC 2: first full version with full chain electronics
 - ► Full size ASIC prototype (15x15 readout channels) ~2x2 cm
 - Irradiation tests done on ALTIROC 2
- ALTIROC 3: is under test and preproduction version under design • Tests of performance done with LGADs bump-bonded

More Detail <u>HGTD-TDR-Chap6</u>

Analog:

- Preamplifier + Discriminator + 2TDC **Digital**:
- Hit buffer, store timing data and hit flag
- Data processed by L0/L1 trigger, allow 35μ s latency
- Luminosity data: sum of hits per bunch crossing

	,
	ĺ
or	
L	
	or

ASIC: ALTIROC2 performance

- Tested with and without full size sensor prototype
- Intensive tests prove it to be fully functional
 - \rightarrow thus used for module assembly tests and demonstrator tests
 - Close to specification as ASIC alone: meets the specs with one activated column ON at a time
 - ► Additional noise found in ASIC+LGAD assembly
 - \rightarrow Understood:
 - Due to parasitic inductances separating sensor/preamp grounds.
 - ► Noise get amplified 10 times more than ASIC alone
 - Close to spec 2.6 fC min. threshold achieved
- Radiation influence studied
- Jitter stays stable with the increasing Total ionising does (TID)

TID: 220 Mrad Dose rate : 3 Mrad/h Temperature : 22°C

- Module = 2 Hybrid (LGAD + ASIC) + Module FLEX (flexible PCB)
- Flexible PCB connect to peripheral electronics(PEB) through FLEX tail
- HGTD will be composed of 8032 modules (3.6 M channels)

Module Assembly

Peripheral Electronics Board

- Peripheral Electronic Boards (PEB) are integral components of the overall detector system.
- They play a crucial role in managing data transmission, power distribution, control, and monitoring within the system.

- Intensive work on characterising all individual components on its prototypes
 - DC-DC converter PointOf Load regulators (bPOL) 12V-in depth investigated regarding space constraints, power efficiency
 - Intense tests communications via lpGBT with the FELIX readout card
 - MUX64: analogue multiplexer (for monitoring ASIC power supply and temperature)

14

Demonstrator

Heater demonstrator

- Validated the modules dissipating heat on CO2 cooling plate
- Found best thermal media = 2 graphite with thermal grease in between

DAQ demonstrator

- Verify the HGTD read-out path to off-detector back-end
- Success communication between FELIX and digital module

Ultra-Precise Track Time Measurements:

- This high precision promises significant gains in suppressing pile-up tracks and forward jets
- Enhanced potential for precise object identification emerges as a result
- **Noteworthy Progress and Prospects:**
 - **LGAD Sensor and ALTIROC Readout ASIC Advancements:**
 - Strides have been taken in the development of LGAD sensors and ALTIROC readout ASICs
 - **LGAD Design and Radiation Hardness:**
 - Promising headway in LGAD design to meet stringent radiation hardness criteria
 - **ALTIROC2 and Upcoming Milestones:**
 - Successful testing of ALTIROC2, the first full-size prototype, showcasing robust functionality
- **Stay tuned for the next milestones:**
 - 2023: Critical Elements Transition:
 - 2023 marks the transition of key components (Sensor, ASIC, and PEB) to the pre-production phase
 - 2024: Module and Detector Units Preparation:
 - Pre-production initiation for module and detector units is slated for 2024
 - 2025-2026: Integration Steps:
 - Integration of HGTD-A and HGTD-C vessels, a pivotal phase in the project

• HGTD will offer track time measurements with an exceptional resolution of 30-50 ps in the forward region $(2.4 < \eta < 4)$

- Carbon-enriched LGADs exhibit remarkable radiation resilience, reaching up to $2.5 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$

- Expectation for ALTIROC3 is currently in test with good preliminary results for ASIC alone, waiting for tests with sensor

Thanks for the listening

Backups

HGTD General Parameters

Pseudo-rapidity coverage Thickness in zPosition of active layers in zWeight per end-cap Radial extension: Total Active area Pad size Active sensor thickness Number of channels Active area Module size Modules Collected charge per hit Average number of hits per track $2.4 < |\eta| < 2.7$ (640 mm > r > 470 mm) $2.7 < |\eta| < 3.5$ (470 mm > r > 230 mm) $3.5 < |\eta| < 4.0$ (230 mm > r > 120 mm) Average time resolution per hit (start and end $2.4 < |\eta| < 4.0$ Average time resolution per track (start and en Main parameters of the HGTD.

$2.4 < \eta < 4.0$
75 mm (+50 mm moderator)
$\pm 3.5\mathrm{m}$
350 kg
Ŭ
$110 \mathrm{mm} < r < 1000 \mathrm{mm}$
$120 \mathrm{mm} < r < 640 \mathrm{mm}$
$1.3\mathrm{mm} imes 1.3\mathrm{mm}$
50 µm
3.6 M
$6.4{ m m}^2$
30×15 pads ($4 \text{ cm} \times 2 \text{ cm}$)
8032
> 4.0 fC
≈ 2.0
≈ 2.4
≈2.6
pprox 35 ps (start), $pprox$ 70 ps (end)

- With the baseline ATLAS architecture, the ATLAS detector is read-out with a single Level-0 (L0) trigger at an maximum rate of 1MHz, with a maximum latency of 10 µs
- The time information of the HGTD hit cells will be read out on reception of this L0 trigger signal
- Evolved scheme considered by ATLAS, called L0–L1, the HGTD will be read-out on the reception of a L1 trigger signal with a maximum frequency of 800 kHz and a maximum latency of 35 µs
- Therefore the maximal bandwidth is limited to 1.28 Gbit s⁻¹

HGTD Bandwidth

ALTIROC R&D Roadmap **Application** Specific Integrated <u>ASICs</u>

- ALTIROCO: version0 ASIC, preamplifier+discriminator wave form sampling on the oscilloscope
- ALTIROC1:5x5 array with complete analogue front end (discriminator, TOA, TOT)
- **ALTIROC2:** first 15x15 full scale prototype, first digital module, with almost complete functionalities
- New territory in HEP: first full scale bump-bond able 1GHz front-end store adout 4pFLGAD pixels
- Maingoal: demonstrate the functionality performance of the ASI (time resolution) + luminosity)

Study of LGAD performance: Lab

• Studies have been performed to check that prototypes meets the specifications before and after irradiation

ASIC: ALTIROC2 performance

ALTIROC2 test bench: ASIC + interface board +FPGA

Telescope

ALTIROC2+sensor

HGTD LGAD prototypes

• HGTD LGADs vendors are: • IHEP-IME (China), USTC-IME (China), IHEP-NDL (China), FBK (Italy), CNM (Spain), HPK (Japan)

383, 1.3 mm, 11 47
5x5, 1.3 mm, IP 57
Pad, 1.0 mm, IP 57
Pad, 1.0 mm, IP 47
Pad, 1.0 mm, IP 37
d, 1.0 mm, IP 37
d, 1.0 mm, IP 47
d, 1.0 mm, IP 57
d. 1.3 mm. IP 37
d. 1.3 mm, IP 47
d, 1.3 mm, IP 57
Pad, 1.3 mm, IP 37
Pad, 1.3 mm, IP 47
Pad, 1.3 mm, IP 57
2x2, 1.3 mm, IP 57
2x2, 1.3 mm, IP 47
2x2, 1.3 mm, IP 37
2x2, 1.0 mm, IP 37
2x2, 1.0 mm, IP 47