T2K NEAR DETECTOR UPGRADE

on behalf of the T2K Collaboration

Technology & Instrumentation in Particle Physics (TIPP2023) 4-8 September 2023 CTICC, Cape Town, South Africa

* supported by RSF 22-12-00358

T2K (TOKAI-TO-KAMIOKA) EXPERIMENT

World-leading long-baseline accelerator neutrino project

- Discovery of $\theta_{13} > 0$ with accelerator neutrinos
- First hints of CPV in neutrino (lepton) sector, $\delta_{CP} \neq \{0,\pi\}$
- Leading sensitivities to Δm^2_{23} , θ_{23} (octant)
- Rich variety of neutrino cross-section measurements
- BSM studies results

Hunting neutrinos

T2K CONCEPT: NEAR DETECTORS

ND measurements constrain flux and v-xsec model params then propagated to FD

- Systematic uncertainties do not fully cancel with Far/Near ratio concept:
 - Flux model different at ND vs. FD due to geometry and oscillation
 - Different detectors \rightarrow different acceptance and efficiencies
 - At ND mainly $V_{\mu}(V_{\mu})$ interacting on CH \longrightarrow use model to infer interactions of $V_{\mu}/V_e(V_{\mu}/V_e)$ on water at FD

3

NEAR DETECTOR COMPLEX ND280

FROM ND280TO ND280-UPGRADE

Data-taking with T2K-II approved till Hyper-K times, ND280 continues as a part of T2K-HK

ND280 has supplied T2K physics with **high-quality measurements**, but with the **increasing statistics** its **limitations** on the flux and the V interaction model uncertainties are **starting to arise** in the analyses

- Non-isotropic efficiency (wrt 4π Super-Kamiokande)
- Hadronic information is essential to improve V-interaction modelling and hence energy reconstruction for OA inputs
 - Relatively high-momentum threshold for protons $\simeq 450 \text{ MeV/c}$ (~100 MeV E_{kin})
 - No detection of neutrons

* proton tracking with $CC0\pi$ selection

ND280-UPGRADE CONCEPT

3D SUPER-FGD DETECTOR

JINST 13 (2018) 02006

Fully active and highly granular 4π scintillator neutrino detector

- Total volume ~192 x 182 x 56 cm³
- 2x10⁶ optically isolated cubes
 - Each cube: $| x | x | cm^3$
 - Each cube: 3 orthogonal Ø 1.5 mm holes
- Total mass: ~2 tons
- One-end Imm Y-II(200) MS WLS fibre
 - ~60.000 readout channels*
- SI3360-I325CS Hamamatsu MPPCs
 - 1.3.x1.3 mm², 2668 pixels, ~1% cross-talk,
 - 70 kHz dark-rate \rightarrow LED calibration system

Super-FGD 2 tons

- Polysterene doped with PTP (1.5 %) + POPOP (0.01%)
- Injection moulding @ Uniplast, Vladimir, Russia
- Chemical reflector coating

* Electronics: FEBs based on CITIROC ASIC JPS Conf. Proc.27(2019) 011011

3D SUPER-FGD DETECTOR

3D SUPER-FGD DETECTOR PROTOTYPES Detailed SFGD talk by A.Dergacheva @ B2 Neutrino Detectors on Tuesday

Tests with small prototypes to confirm the SFGD concept

• Check performance: light-yield over detector, inter-cubes cross-talk, timing

0.9

0.8

0.7

0.6 0.5 0.4

0.3

0.1

0.0

100

(barn)

Fotal Cross-section

n beam @ LANL

One channel timing < Ins, further improved with > I cubes/fibres 9

2017: mu/e/p beam @ CERN and cosmics

- SFGD concept JINST 13 (2018) 02006
- Proof of concept NIMA 923 (2019) 134-138
 2018: e/μ/π/p beam + 0.2 T field @ CERN
- Characterisation JINST 15 (2020) 12, P12003
- Timing studies JINST 18 (2023) 01, P01012
 2019-2020: neutron beam @ LANL total x-section
- N(z)=N₀•exp(-Tσ_{tot}z) PLB 840 (2023) 137843

TIME-PROJECTION CHAMBERS

Two new additional "horizontal" TPCs up and down SFGD detector

- High resolution tracking and particle identification. Design requirements
 - $\sigma_p/p < 9\%$ @ IGeV/c, $\sigma_{dEdX} < 10\%$
 - 3D tracking capability of TPCs \rightarrow excellent pattern recognition, matching tracks/hits from active targets O(500 µm) space resolution
 - Low material budget walls ~ 5% X₀
- New field cage design to minimize dead space and maximize the tracking volume
 - Aim to gain maximum profit from the space available around SFGD
 - No CO₂ filled outer volume wrt vertical TPCs
- Replace the standard bulk-MicroMegas with a new resistive bulk-MicroMegas

TIME-PROJECTION CHAMBERS

Field cage composition

"field strips"
 Cu strips & Glue & Kapton (100µm)
 Aramid Fiber 2mm
 Aramid Honeycomb 35mm
 Aramid Fiber 2mm

Field cage material budget "original" vertical TPCs: 12 cm — 3.4% X₀

new TPCs: 4 cm — 2% X₀

Electronics (all TPCs): AFTER 72-channel ASIC chip

Encapsulated Resistive Anode Micromegas (ERAM) with grounded mesh, anode at a positive amplification voltage

- Pad plane covered by a resistive layer
 - Spread the charge over several pads → less and larger pads for the same spatial resolution
 - Insulation of the resistive anode from the pads
- Suppress formation of sparks and limit their intensity
- Safe operation by a capacitive coupling readout
- Get rid of the cumbersome anti-spark protection circuitry
- Detection plane is fully equipotential → more uniform field, less track distortions + module flexibility

Parameters	HATPC	vs VTPC
Overall $x \times y \times z$ (m)	$2.0 \times 0.8 \times 1.8$	0.85 x 2.2 x 1.8
Drift distance (cm)	100	90
Magnetic Field (T)	0.2	
Electric field (V/cm)	275	
Gas Ar-CF ₄ -iC ₄ H ₁₀ (%)	95 - 3 - 2	"T2K" gas mix
Drift Velocity $cm/\mu s$	7.8	
Transverse diffusion ($\mu m / \sqrt{cm}$)	265	
Micromegas gain	1000	
Micromegas dim. z×y (mm)	340x420	340x360
Pad $z \times y$ (mm)	10×11	7x10
N pads	36864	124272
el. noise (ENC)	800	
S/N	100	
Sampling frequency (MHz)	25	
N time samples	511	

Kapton (125µm)

Al foil (50µm)

* field cages by NEXUS company (Barcelona)

Mesh @ GND

TIME-PROJECTION CHAMBERS PROTOTYPES

2018-2023: 4 prototypes + hundreds of validation tests

• Production readiness in 2023. Bottom TPC to be installed in fall 2023, top TPC in spring 2024 Characterization of charge spreading (RC) and gain of ERAMs using X-ray at CERN

- NIMA 1052 (2023) 168248
- Detailed physical model to simultaneously extract gain and RC information of the ERAMs

Measurements of spatial and dEdX resolution via several test beam campaigns at CERN and DESY

- NIMA 957 (2020) 163286, NIMA 1025 (2022) 166109, NIMA 1052 (2023) 168248
- Achieved spatial resolution better than 800 μm and dE/dx resolution better than 10%.

TOF DETECTORS

6 TOF planes fully envelope SFGD&HA-TPCs

- Measure crossing time of charged particles
 - Aim for < 0.5 ns resolution
- Separate and veto inward going background
- Provide cosmic trigger for SFGD and TPCs
- Improve PID using timing (if reach < 0.2 ns)

JINST 17 (2022) 01, P01016

- Cast EJ-200 plastic scintillator
 - 0.9 ns rise, 2.5 ns decay times, 380 cm Latt
 - No WLS \rightarrow would further degrade timing
- 20 (18 in bottom) 12 x 1 x 230 cm³ bars in each plane
- Large area 6x6 mm² SiPM readout from both bar ends
 - Hamamatsu SI3360-6050PE (SiPM/MPPC)
 - Array of 8 SiPMs at each side, grouped in 4 pairs
 - Channels` connection and signal processing optimisation to further avoid timing depletion

PHYSICS WITH ND280 UPGRADE

- Improved $\sim 4\pi$ acceptance \rightarrow better constraints on the neutrino interaction model
- Better reconstruction of outgoing nucleons → access to new observables
 - Neutron tagging and TOF-based neutron energy reconstruction in anti-V channel
- Increased target mass (x2 current ND280) → more statistics
- V interaction measurements beyond p_{μ} , $\cos \theta_{\mu} \rightarrow exclusive and multidimensional analyses with nucleon info, transverse kinematics*$
- Enhance electron analyses purities
 - e+/e- vs γ separation

• TOF detectors further suppress external backgrounds

* see Backup Slides for transverse variables details

** proton tracking with $CC0\pi$ selection

PHYSICS WITH T2K & ND280 UPGRADE: OSCILLATION ANALYSIS

Reduction of systematics uncertainties crucial to enhance T2K-II OA sensitivities

Parameter	Current ND280 (%)	Upgrade ND280 (%)
SK flux normalisation	3.1	2.4
$(0.6 < E_{\nu} < 0.7 \text{ GeV})$		
MA_{QE} (GeV/c ²)	2.6	1.8
v_{μ} 2p2h normalisation	9.5	5.9
2p2h shape on Carbon	15.6	9.4
MA_{RES} (GeV/ c^2)	1.8	1.2
Final State Interaction (π absorption)	6.5	3.4

Phys. Rev. D 105,032010 - for sensitivity to V-xsec nuclear model parameters

STATUS OF ND280 UPGRADE

SuperFGD at J-PARC. Electronics installation, calibration, on surface tests with cosmics.

Bottom TPC delivered to J-PARC in August 2023. "On surface" tests. New gas system assembled.

TOF detector at J-PARC. 2 modules installed into the Near Detector pit.

The upgraded ND280 is to begin collecting first neutrino data in November 2023

SUMMARY

- stay tunea stay beckons hew data beckons T2K is working steadily on its quest on filling neutrino puzzle
- T2K Phase-II approved extended run for ~2023-2027 to give smooth transition to Hyper-Kamiokande era
 - Reach 3σ exclusion of non-CPV for certain δ_{CP} and MH
 - Key element: **near detector upgrade** to further reduce systematic uncertainties + enhance physics capabilities
- ND280Upgrade features novel detectors
 - Super-FGD with 2M plastic scintillator cubes readout by 3 WLS fibres each \rightarrow unique tracking capabilities
 - 2 Ar gaseous TPCs with improved ERAM readout \rightarrow better spatial resolution with less and larger pads + less affected by sparks
 - **TOF** cast scintillator plates readout by large area SiPMs providing < 150 ps timing
- First neutrino data with ND280Upgrade in November 2023

Thank you for your attention

BACKUP MATERIALS

PHYSICS WITH ND280 UPGRADE: NEW OBSERVABLES AND ENERGY RECONSTRUCTION

• Neutrino energy can be estimated with lepton kinematics only

 $E_{
u}^{QE}=rac{m_{p}^{2}-\left(m_{n}-E_{b}
ight)^{2}-m_{\mu}^{2}+2\left(m_{n}-E_{b}
ight)E_{\mu}}{2\left(m_{n}-E_{b}-E_{\mu}+p_{\mu}\cos{ heta_{\mu}}
ight)}$

• With a nucleon reconstructed, the visible energy can give a better estimation *Phys. Rev. D* 105,032010

 $E_{\rm vis} = E_{\mu} + T_N$, Phys. Pev. D 101,092003

 Transverse kinematic imbalance → probe nuclear effects: Fermi motion, FSI, multi-nucleon processes

3D SUPER-FGD CUBES MANUFACTURING

Uniplast Co. (Vladimir city): Cube production <u>Tzk</u>

Injection molding

Chemical reflector

Hole drilling

MM

Hole cleaning

NEWTIC GAS SYSTEM

New **simplified** gas system designed to

- serve all 5 TPC's (3 present TPC's + 2 new HA-TPC's)
 - \rightarrow total 18.5 m³ detector active volume
- mix and closed-loop circulate active volume gas through filters

Main parameters (unchanged wrt present)

- gas mixture unchanged: Ar-CF₄-iC₄H₁₀ (95:3:2)
- flow rates: up to 1 volume change per 6 hours (~ $3m^3/h$) \rightarrow for keeping O₂ CO₂ H₂O contamination at ppm level
- fresh gas injection: 10% of circulation flow
- flow CO₂ gas through outer volume of present 3 TPC's (~1.2m³/h)
- maintain overpressure ΔP~4mbar wrt atmospheric P and ΔP~0.1mbar between inner and outer volumes old TPC's

Gas system modules design based on CERN standards

- modules: mixers, closed-loop circulation modules, analyzers, ...
- HW PLC control via profibus connection, SW WinCC-OA SCADA2 itf
 - \rightarrow simplified operations and maintenance
- \rightarrow fully automate system with high degree of reliability

T2K→T2K-II UPGRADES

J-PARC upgrades

- Operation at a higher beam intensity.
- Subsequent upgrade of neutrino beamline to support the beam intensity.
- Horn power supply ramp up for better focusing.
- Expected to be ready for autumn 2023

ND upgrades

- New complex detectors to replace the old P0D detector.
- This will improve our constraints on flux and interaction uncertainties, and also paves way for better xsec measurements.
- Expected to start data taking in 2023

FD upgrades

- Gadolinium was loaded into SK in summer 2020 in different stages with different concentration
- This leads to improved neutron tagging and hence better $\nu/\overline{\nu}$ separation.
- T2K took its Run11 data using SK-Gd, although not yet used in the analysis.

ANALYSIS RESULTS: θ_{13} MEASUREMENTS

- Good agreement with reactor on θ_{13} •
- Large CPV favoured
- CP-conserving values of $\delta_{CP}=0$ and $\delta_{CP} = \pi$ both outside of 90% CL intervals

3

T2KVS OTHER MEASUREMENTS

- δ_{CP} -vs-sin² θ_{23} : at 90% CL, δ_{CP} T2K, NOVA and Super-K contours overlap. T2K consistent with Super-K best fit, NOVA best fit just outside contour
- Δm_{32}^2 -vs-sin² θ_{23} : at 90% CL, θ_{23} contours overlap. T2K and NOVA favour upper octant while Super-K prefers lower

MORET2K OSCILLATIONS RESULTS

* Bayesian with reactor constraint

27

FAR DETECTOR MEASUREMENTS SUPER-KAMIOKANDE (SUPER-K)

Total 6 Super-K samples currently used in oscillation analysis

lode	Sample Name	Description		
ν	1Re	One e-like ring in $oldsymbol{ u}$ mode		
	1Re CC1π+	One e-like ring and Michel electron in $\boldsymbol{\nu}$ mode		
	1Rµ	One μ -like ring in ν mode		
	MRμ CC1π+ (Multi-Ring)	Two rings (μ + π) + ME or I μ-ring + 2 ME		
$\bar{\boldsymbol{\nu}}$	1Re	One e-like ring in $\overline{\nu}$ mode		
	1Rµ	One $\mu\text{-like}$ ring in $\overline{\pmb{\nu}}$ mode		

T2K DATA TAKING

 $\bar{\nu}$ -mode: 1.65 × 10²¹ (43.2%)

23 Jan 2010 – 27 Apr 2021 POT Total: 3.82 × 10²¹

T2K ANALYSIS STRATEGY

NEUTRINO OSCILLATIONS IN T2K

CP PHASE/ CHANNEL	$P(u_{\mu} ightarrow u_{e})$	$P(ar{ u}_{\mu} ightarrow ar{ u}_{e})$
δ _{CP} =-π/2	Enhance	Suppress
δ _{CP} =π/2	Suppress	Enhance

- Test CP symmetry
 - LO dependence on $sin^2 2\theta_{13}$, $sin^2 \theta_{23}$
 - can distinguish octant $\theta_{23}>45^{\circ}$ from $\theta_{23}<45^{\circ}$
 - Sub-leading dependence on $sin(\delta_{CP})$
 - can probe CPV with ~30% effect
 - Sub-leading dependence on $\pm \Delta m^2_{23}$
 - ~10 % matter effect

- Test CPT symmetry
- LO dependence on $sin^2 2\theta_{23}$
 - cannot retrieve octant $\theta_{23}>45^{\circ}$ vs $\theta_{23}<45^{\circ}$
- LO dependence on $|\Delta m^2_{23/31}|$
 - not sensitive to mass ordering

*LO - leading oder

FAR DETECTOR MEASUREMENTS SUPER-KAMIOKANDE (SUPER-K)

- 50 kton water-Cherenkov tank
- Separate e/µ-like rings:
 - <1% misidentified μ as e
- π^0 rejection
- No magnetic field

3-FLAVOUR NEUTRINO OSCILLATIONS

33

Credit to APS

The Growing Excitement of Neutrino Physics

- 1930: On-paper appearance as "desperate" remedy by W. Pauli
- ♦ 1956: $\bar{\nu}_e$ first experimentally discovered by Reines and Cowan
- ♦ 1962: ν_{μ} existence confirmed by Lederman *et al*.
- 1998: Atmospheric neutrino oscillations discovered by Super-K
- ♦ 2000: ν_{τ} first evidence reported by DONUT experiment
- 2001: Solar neutrino oscillations detected by SNO (KamLAND 2002)
- ♦ 2011: $\nu_{\mu} \rightarrow \nu_{\tau}$ transitions observed by OPERA
- ♦ 2011-13: $\nu_{\mu} \rightarrow \nu_{e}$ by T2K, $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$ deficit observed by Daya Bay(2012) of oscillation signal Nobel Prize for discovery of
- \diamond 2015: Nobel prizes for ν oscillations, Breakthrough prize (2016)

						34	
1930		1955			1980	2015	
Pauli predicts the Neutrino	Fermi's theory of weak interactions	Reines &2 distinctCowan discoverflavors(anti)neutrinosidentified		Davis discovers the solar deficit	Kamioka II and IMB see atmospheric neutrino anomaly SAGE and Gallex see the solar deficit LEP shows 3 active flavors Kamioka II confirms solar deficit		

Nobel & Breakthrough for ν oscillations T2K observe $\nu_{\mu} \rightarrow \nu_{e}$ appearance Daya Bay observe

theta 13 at 5 sigma

KamLAND confirms

neutrino astroparticle

solar oscillations Nobel Prize for

SNO shows solar

oscillation to active

Super K confirms solar deficit and "images" sun Super K sees evidence

of atmospheric neutrino

Nobel Prize for v discovery! LSND sees possible indication

K2K confirms atmospheric

oscillations

physics!

flavor

oscillations

Kamioka II and IMB see supernova

distinct flavors!

neutrinos

NEUTRINO OSCILLATIONS IN T2K

δ_{CP} and mass hierarchy (MH) both cause differences in V and anti-V oscillations

CP PHASE/ CHANNEL	$P(\nu_{\mu} \rightarrow \nu_{e})$	$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$
δ _{CP} =-π/2	Enhance	Suppress
δ _{CP} =π/2	Suppress	Enhance

At T2K baseline (L~295km, E~0.6GeV):

- CPV: $\approx \pm 30\%$ effect
- Mass hierarchy: $\approx \pm 10\%$ effect

ON-AXIS NEAR DETECTOR INGRID

- T2K utilises off-axis neutrino beam:
 - Important to monitor beam intensity and direction
 - Iron/scintillator detector to measure beam profile and rate
 - Day-by-day monitoring
 - Direction stable within I mrad (~2% shift in peak energy)

ANALYSES WITH T2K ND280

- Constrain flux and V interaction model parameters prior to oscillations
- 30 GeV protons on C target, intense v beam from π/K
 + complex detector →
- Rich opportunities for physics measurements:
 - Neutrino cross-sections
 - New physics signals
 - Light-sterile neutrinos with SBL oscillations
 - Heavy neutral leptons M ~ O(I GeV)
 - Dark-photon/LDM signals

SYSTEMATIC UNCERTAINTIES

	1	R	MR			$1 \mathrm{R}e$	
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

- Numbers quoted are the RMS of the predicted numbers of events in the far detector sample obtained when varying systematic parameters according to their prior distribution
- Some systematic parameters do not have a prior constraint, and can end up having larger effect than estimated with this method in a fit

T2K NEUTRINO FLUX PREDICTION AND UNCERTAINTIES

- Simulation: FLUKA, GCALOR and GEANT3
- Tuned to external data: NA61/SHINE (CERN)
- UPDATE: moved from 2009¹ T2K replica target data to 2010² one
 - more statistics for π^{-} production.
 - adds K^{\pm} and p data. ^{1 Eur. Phys. J. C76, 617 (2016)} ^{2 Eur. Phys. J. C79, 100 (2019)} ntrinsic V_e background at ~0.4% level
- Intrinsic V_e background at ~0.4% level •

T2K NEUTRINO INTERACTION MODELLING

- NEUT generator tuned to external data from MiniBooNE, MINERvA, bubble chambers, etc
- CCQE dominant @ T2K energies
- Updates: Charge Current Quasi Elastic (CCQE)
 - Expanded parameterization of the spectral function
 - Normalization of each nuclear shell for Mean Field (MF)
 - Normalization of Short Range Correlations (SRC)
 - Added Pauli Blocking to give more freedom in low Q2 region
- Updates: 2p2h/MEC
 - Better description of 2p2h pn/nn pairs contribution
- Updates: other
 - New tune of bubble chamber data to resonance model parameters
 - New resonance decay uncertaintiesEffective inclusion of binding energy for Resonant channel
 - New Nucleon Final State Interactions (FSI) uncertainty
 - New multi- π uncertainty varying shape of hadronic mass and π -multiplicity

PHYSICS WITH T2K & ND280 UPGRADE: OSCILLATION ANALYSIS

