

European Organization for Nuclear Research(CERN)

Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs TIPP 2023 Cape Town

07/09/2023

Etienne FORTIN

On behalf of the ATLAS Liquid Argon Calorimeter Group

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

Introduction

- LHC will be upgraded to HL-LHC starting in 2026.
 - Instaneous luminosity increased by a factor of 5 to 7
 - Pileup of 140 to 200 p-p collision
- To cope with the new conditions ATLAS will be upgraded
 - Trigger level 1 increased from 100 kHz to 1 MHz
 - On detector electronic need to handled higher level of radiations...

Liquid Argon Calorimeter

- High pile-up will cause more overlapped and distorted pulse
- To keep the performance we need to improve the algorithms for energy computation

Additional environnement constrains

- Need to compute energies on 125 ns
- Need to provide energies for each LHC bunch crossing (every 25ns) for the trigger system.
- Want to use full granularity of dectector for better performances > need to process 182k Cells
- Limited space as the processing unit is positioned underground

The proposed solution is:

- Use High end FPGAs on ATCA boards
- 2 FPGA/boards
- High number and high speed input and output links

We call it a LASP (Liquid Argon Signal Processing)

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

LASP

• LASP board containing 2 processing units based on INTEL FPGAs

- Demonstrator board available with Stratix 10 FPGAs
 - baseline for this talk
- Final board will be based on Agilex FPGAs
- Stratix and Agilex improved a lot the computation capabilities of FPGAs

• One FPGA should process 384 channels

Around 125 ns allocated latency for energy computation

- The new generation of FPGA gives more ressoures
 - Allow more complex algorithm
- We investigates the use of neural network
 - Have to meet all the constraints (Ressources, latency...)
 - Good precision in the proccessing
- 2 Types of neural networks (NN)
 - Convolutional NN (CNN)
 - Recurrent NN (RNN)

CNN structure

- Two blocks to identify the time of energy deposit and compute the corresponding energy
 - Two variations with 3 or 4 convolution layers (3-conv and 4-conv)
- Energy computation block
 - Outputs the computed energy at a given bunch crossing
- Time (bunch crossing) identification block
 - Outputs the probability of energy deposit (above noise) at a given bunch crossing
- 28 (13) samples as input for 3-conv (4-conv)
 - 23 (8) in the past (before the probed bunch crossing) to account for previous deposits

07/09/2023

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

CNN performance

- Clean improvement in energy resolution in the region where pulses overlap (low time gap between two signals)
- Improved efficiency in detecting energy deposits
 - Higher rejection of noise and mis-timed signals

RNN structure

- Two architectures used
 - Single cell and Sliding windows
 - 4 samples corresponding to the signal are used
 - ullet + 1 in the past for the sliding windows
- Two types of RNNs
 - Vanilla RNN and LSTM(Long Short-Term Memory)

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

07/09/2023

RNN performances

- LSTM with single cell recovers best the regions with small gap
 - Usage of full information from past events
- Vanilla RNN shows significant improvement with only 1 sample from the past

Etienne FORTIN (CERN)

- Overall better energy scale and resolution for all NNs with respect to OF_MAX
 - Lower tails as seen from the 98% median range
- All NNs optimized to reduce as much as possible the required computing resources
- LSTM perform best but have a larger number of parameters
 - Harder to fit in the FPGAs

Algorithm	LSTM (single)	LSTM (sliding)	Vanilla (sliding)	CNN (3-conv)	CNN (4-conv)	Optimal filtering
Number of parameters	491	491	89	94	88	5
MAC units	480	2360	368	87	78	5

Etienne FORTIN (CERN)

07/09/2023

Focus on Vanilla RNN implementation in HLS and VHDL 384 channels per FPGA 125 ns latency

- Implemented on Stratix 10 FPGA
 - reference 1SG280HU1F50E2VG
- CNN implemented in VHDL
- RNN implemented in HLS
- CNN and Vanilla RNN look feasible for the LAr usecase with time multiplexing

	3-Conv CNN	4-Conv CNN	Vanilla RNN (sliding)	LSTM (single)	LSTM (sliding)
Frequency					
F _{max} [MHz]	493	480	641	560	517
Latency					
clk _{core} cycles	62	58	206	220	363
Initiation interval					
clk _{core} cycles	1	1	1	220	1
Resource					-
Usage					
#DSDa	46	42	34	176	738
#L/01 5	0.8%	0.7%	0.6%	3.1%	12.8%
	5684	5702	13115	18079	69892
#ALMs	0.6%	0.6%	1.4%	1.9%	7.5%

- Energy computed with quartus simulation and verified on target
- O(1%) resolution due to firmware approximations
 - LUT for activation functions
 - Fixed point arithmetics

Etienne FORTIN (CERN)

07/09/2023

HLS optimisations (Vanilla RNN) G. Aad et al 2023 JINST 18 P05017

- Optimisation needed to fit vanilla RNNs that can compute 384 channels within 125 ns
 - Multiplexed RNNs use more resources as we add more networks to the FPGA
- Several optimisations are performed
 - Activation functions in LUT
 - Number of bits in fixed point representation
 - Rounding and truncation in arithmetic operations
 - Implementation of vector/matrix multiplication (Dot product)
- Dot product implementations
 - Naive C++: let HLS do it all
 - Accumulate (sum) in DSPs by chaining them (ACC37)
 - Accumulate (sum) in ALUT (ACC19)

Implementation		ALUTs	FF	DSP	
	C++ style	709	222	8	
@100 MHz ·	ACC37	116	79	4	
	ACC19	137	78	4	

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

07/09/2023

Rounding (Vanilla RNN)

- Compromise between energy resolution and resource usage and latency
 - Truncation of IO and Internal types leads to important reduction of latency with small impact on energy resolution
 - Weight type rounded in software (no impact on latency)

ATLAS LAR ML on FPGA

VHDL implementation of Vanilla RNN

- HLS does not allow to reach the target frequency and resource usage
 - Increase of the RNN ALM resources and reduction of FMax as we add networks to the FPGA
- Move to VHDL for the final fine tuning
- Force placement of the RNN components
 - Allow to better tackle timing violations and improve FMax
- Use incremental compilation
 - Keep networks with no timing violations and recompile only the rest

HLS placement

VHDL forced placement

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

RNN firmware results

- HLS allows fast development and optimisation of the firmware
 - Multiple developments and optimisations of RNN firmware in a short time
 - RNN for INTEL FPGAs implemented in HLS4ML for wider usage
- VHDL is needed to fine tune the design and fit the LAr requirements
- Vanilla RNN firmware produced and fit the requirements with Stratix 10
 - Better performance expected with the Agilex FPGA
 - However still need to test it within the full LASP firmware

	N networks x multiplexing	ALM	DSP	FMax	latency
target	384 channels	30%*	70%*	-	125 ns
HLS (no multiplexing)	384x1	226%	529%	-	322 ns
HLS optimized	37x10	23%	100%	414 MHz	302 ns
VHDL optimized	28x14	18%	66%	561 MHz	121 ns

*based on experience with the phase I upgrade

Conclusion

- CNN and RNN networks outperform the optimal filtering algorithm for the energy reconstruction in the ATLAS LAr Calorimeter
- All networks are designed to reduce to a maximum the resource usage while keeping the performance
- CNN and Vanilla RNN are serious candidates that can fit the stringent requirements on the LASP firmware
- Vanilla RNN and CNN optimisations allow to reach the requirements in terms of resource usage and latency
 - Testing on hardware (INTEL DevKits and LASP prototypes) started and shows good results
 - Need to check timing violations with all other components of the LASP firmware
 - Next step is to quantify the effect on object (electrons, photons) reconstruction and physics performance

Opening the way for AI usage to process raw detector data online and at trigger level

Etienne FORTIN (CERN)

ATLAS LAR ML on FPGA

Any questions ?