TIPP2023

The CMS Tracker performance in Run 3

Tomáš Kello on behalf of the CMS Collaboration Presented @ TIPP2023 Cape Town (South Africa) 5th of September 2023

INFN

Part 1: The CMS TrackerDetector description

In this talk

• Detector refurbishment during Long Shutdown 2 (LS2)

Part 2: Performance studies in Run 3

- Silicon Pixel performance [2] [3]
- Silicon Strip performance [4] [5]

Part 3: Tracker alignment and validation

- What is alignment and why it is needed?
- Alignment performance studies [6] [7]

LHC Run 3

Part 1: The CMS Tracker

CMS Silicon Pixel detector

- CMS
- Phase-1 Pixel tracker in place since the end of 2016 (early 2017)
- The detector component closest to the collision point

Particle-hit rate up to $600 MHz/cm^2$ (Layer 1)

- **Pixel refurbished** during LS2 [10]
- Layer 1 fully exchanged
 →Improved ROCs (reduced cross-talk noise...)
 →reverse bias up to 800V (compared to 450V before)

Defect Layer 2 modules were replaced

TIPP2023 @ Cape Town

05/09/2023

Part 2: CMS Tracker Performance in Run 3 Pixel

Pixel performance – cluster properties

Hit position interpolated using the charge information from all pixels in the **cluster**

Loss in charge collection efficiency

Cluster is formed of adjacent pixels with a charge above certain threshold

Radiation damage

INFN

- Non-irradiated detector would exhibit flat charge trend in time
- **Solution:** increase operational bias voltage

Layer 1 gradually from $150 \rightarrow 400 \text{ V}$

Solution: annealing sensors when possible

Visible at $\sim 11 \text{fb}^{-1}$ also for other layers

Pixel performance – HV bias scans

- Target: To determine operational bias voltage for pixel sensors
- Monitored factors: hit efficiency, cluster size & charge

Pixel performance – hit efficiency

- **Definition:** Probability to find any cluster within 1 mm around an expected hit (independent of the cluster quality)
- Bad components are excluded from the measurements (~5%); measured using muon tracks

BPIX L1 can now operate at > 96% hit efficiencyAt $2.1 \times 10^{34} cm^{-2} s^{-1}$ **BPIX L2-4 and FPIX** > 98% hit efficiencyAt $2.1 \times 10^{34} cm^{-2} s^{-1}$

Part 2: CMS Tracker Performance in Run 3 Strip

Strip performance – hit efficiency

 $\approx 96\%$ of all components

- Trajectories passing near the edges of sensors are excluded from measurement
- Known bad components are not used in the measurement +
- Using the 13.6 TeV data (2022) with a standard/high lumi fills for inst. lumi under/over $2 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Strip performance – S/N ratio

- Signal-to-noise ratio measured regularly, including early 2023 13.6TeV data
- High S/N ratio ensures better zero suppression and proper cluster buildup

- Trend shows decreasing slope as expected from irradiation studies
- Measured separately for 320 μm and 500 μm sensor thickness

I Extrapolation at 500 fb^{-1} :

Strip performance – hit resolution

- Pair method: resolution computed using hits in overlapping modules of the same layer
- Hit pairs selected requiring various quality conditions on strip-clusters (e.g. at most 4 strips per cluster)

- Hit resolution measured for different widths of strip-clusters as a function of the strip pitch
- **D** Measured resolution is better than expected resolution for a pitch/ $\sqrt{12}$
 - $\checkmark\,$ demonstrating benefits of the charge sharing

Part 3: CMS Tracker Alignment in Run 3

Tracker alignment

- Detector designed with excellent **hit resolution** $\sigma_{hit} \approx O(10 \mu m)$
- But burdened by suboptimal **precision of mechanical alignment** $\sigma_{\text{align}} \approx O(100 \mu \text{m})$

Primary Vertex validation (2023)

CMS CMS

- Performance measured by a quality of PV reconstruction
- Target: distributions of track-vertex residuals (i.e. impact parameters)
- Indicates physics object performance in the Pixel

Distribution of median residuals (2023)

- INFN
- Median of **track-hit residuals** $x'_{pred} x'_{hit}$ is determined for a given number of tracks
- Tracker geometry in 2022 \rightarrow starting geometry in 2023

Note:

- □ Tracks are first refitted removing the hit under scrutiny
- Perfectly aligned detector would show
 DMR centred at zero
- Width of DMR indicates local alignment precision

Alignment validation in 2022 - trends

Black: automated (online) Low Granularity alignment (high level structures)

Red: refined offline + High Granularity automated alignment (last 2 fb^{-1} before Technical stop)

Blue: High Granularity alignment for remaining 30 fb^{-1} of 2022 (level of ladders and panels)

Conclusions

- Challenging conditions \leftrightarrow LHC is stable at providing inst. luminosity of $2.1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ (expected value till the end of Run 3)
- The CMS Tracker is in the excellent state, behaved properly from the beginning of Run-3 and is expected to continue doing so till the end of Run 3
 - BPIX Layer 1 fully exchanged (new readout chip) during LS2
 - **Excellent hit efficiency/resolution, minimum of bad components** ...
- Ageing/Irradiation effects visible ↔ successful attempts to mitigate them

□ Robust monitoring of the Tracker allows for the active intervention

Excellent results with offline/automated Tracker Alignment in 2022/23
 → more dedicated campaigns yet to come

References:

[1] Tai Sakuma and Thomas McCauley 2014 J. Phys.: Conf. Ser. **513** 022032. URL: <u>Detector</u> and Event Visualization with SketchUp at the CMS Experiment – IOPscience

[2] CMS Collaboration. Performance of the CMS phase-1 pixel detector with Run 3 data. URL: https://cds.cern.ch/record/2839741?ln=en

[3] CMS Collaboration. Pixel Detector Performance in early 2023. URL: http://cds.cern.ch/record/2865842/files/DP2023_041.pdf

[4] CMS Collaboration. CMS Silicon Strip Tracker Performance Results in 2022. URL: <u>https://cds.cern.ch/record/2860872?ln=en</u>

[5] CMS Collaboration. CMS Silicon Strip Tracker Performance in 2023. URL: https://cds.cern.ch/record/2865841/files/DP2023_040.pdf

[6] CMS Collaboration. Tracker alignment performance in 2022. URL: <u>http://cds.cern.ch/record/2845618/</u>

[7] CMS Collaboration. Tracker alignment performance in early 2023. URL: <u>http://cds.cern.ch/record/2865840</u>

[8] CMS Luminosity public results. URL:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults#Run 3 charts of lumin osity

[9] Tamas Almos Vami for the CMS Collaboration. Calibration and performance of the CMS pixel detector in LHC Run 2. <u>arXiv:1909.12920v1</u>

[10] Lars O. S. Noehte for the CMS Collaboration. CMS Phase-1 pixel detector refurbishment during LS2 and readiness towards the LHC Run 3.

https://iopscience.iop.org/article/10.1088/1748-0221/17/09/C09017/pdf

[11] Giacomo Sguazzoni for the CMS Collaboration. The construction of the CMS Silicon Strip Tracker. URL: <u>https://arxiv.org/pdf/0801.2468.pdf</u>

[12] CMS Collaboration. The Performance plots for Phase 1 Pixel Detector, August 2018. <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PixelOfflinePlotsAugust2018</u>

[13] Bartosik N. Associated top-quark-pair and b-jet production in the dilepton channel at sv = 8 TeV as test of QCD and background to tt+Higgs production. URL: <u>https://bib-pubdb1.desy.de/record/222384</u>

[14] Musich M. The Alignment of the CMS Tracker and its Impact on the early Quarkonium Physics URL: <u>http://musich.web.cern.ch/musich/PhDThesis_Musich.pdf</u>

Thank you for your attention!

Contact: tomas.kello@cern.ch

Pixel performance – cluster properties

- **Hit position interpolated using** the charge information from all pixels in the **cluster**
- **Cluster is formed of adjacent pixels** with a charge above certain threshold

Loss in charge efficiency

Cluster size defined by charge distribution

2023

INFN

- Non-irradiated detector would exhibit flat size profile in time
- **Solution:** increase operational bias voltage

Layer 1 gradually from $150 \rightarrow 400 \text{ V}$

Solution: annealing sensors when possible

Visible at $\sim 11 \text{fb}^{-1}$ also for other layers

Radiation damage

Pixel performance – cluster properties

• Hit position interpolated using the charge information from all pixels in the cluster

Loss in charge collection efficiency

• **Cluster is formed of adjacent pixels** with a charge above certain threshold

Radiation damage

Cluster charge distribution in **FPIX**:

05/09/2023

- flat charge profile in time
- Increase in charge during technical stop due to the new gain calibration

600

450

300

Much narrower y-axis range compared to BPIX

y[µm]

Pixel performance – hit efficiency

- **Definition:** Probability to find any cluster within 1 mm around an expected hit (independent of the cluster quality)
- Bad components are excluded from the measurements; measured using muon tracks

BPIX L1 can now operate at > 96% hit efficiencyAt $2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ **BPIX L2-4 and FPIX** > 98% hit efficiencyAt $2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Pixel performance – HV bias scans

- Target: To determine operational bias voltage for pixel sensors
- Monitored factors: hit efficiency, cluster size & charge

Cluster size in x-direction (FPIX)

Cluster size in y-direction (FPIX)

Note:

Operational bias: 350V (Ring 1), 300V (Ring 2)

Strip performance – bad components

Red: full module not in readout

Orange to green: one or more readout fibers not in readout

Light blue: single readout chip not in readout

Dark blue: small group of strip not in readout

Strip performance – S/N ratio

- Signal-to-noise ratio measured regularly, including early 2023 13.6TeV data
- High S/N ratio ensures better zero suppression and proper cluster buildup

Primary Vertex validation (2023)

- Performance measured by a quality of **PV reconstruction**
- Target: distributions of track-vertex residuals (i.e. impact parameters)
- Indicates physics object performance in the Pixel

Note:

- PV are first refitted removing the track under scrutiny
- Perfectly aligned detector would show flat distribution centred at zero
- Improvement visible for alignment at higher granularity and using better statistics

Primary Vertex validation (2023)

31

- Performance measured by a quality of **PV reconstruction**
- Target: distributions of track-vertex residuals (i.e. impact parameters)
- Indicates physics object performance in the Pixel

- PV are first refitted removing the track under scrutiny
- Perfectly aligned detector would show flat distribution centred at zero
- Improvement visible for alignment at higher granularity and using better statistics

Distribution of median residuals (2023)

- Median of track-hit residuals $x'_{pred} x'_{hit}$ is determined for a given number of tracks
- Tracker geometry in 2022 \rightarrow starting geometry in 2023

Note:

- □ Tracks are first refitted removing the hit under scrutiny
- Perfectly aligned detector would show
 DMR centred at zero
- Width of DMR indicates local alignment precision

Tracking efficiency

- Measured by means of the Tag&Probe method exploiting $Z \rightarrow \mu\mu$ resonance
- Early 2022 data (7.6 fb^{-1}) and LO DY simulation (matching the PU distribution in data)
- Tag muon: tight identification/isolation criteria, $p_{\rm T} > 27 {\rm GeV}$, ...
- Probe muon: any standalone muon with at least 1 hit in the CMS Muon system, ...

