

Design and performance test of Shashlyk EM calorimeter for the SoLID project at Jefferson Lab

<u>Cunfeng Feng,</u> H. Sun, D. Liu Shandong University, China <u>X. Zheng</u> University of Virginia, USA

TIPP, Cape Town, 4-8, September, 2023

Outline

- SoLID experiment and Electromagnetic Calorimeter
- Material of this Shashlyk Calorimeter
- Fabrication process of the Calorimeter
- Performance test with cosmic ray
- Summary

Solenoidal Large Intensity Device (SoLID) at Thomas Jefferson National Accelerator Facility (JLab)

SoLID (Hall-A, Jefferson Lab):
➢ High Intensity (10³⁹ /cm².s)
➢ Large Acceptance

Physics Programs:

- ✓ Parity Violation DIS
- ✓ Near-Threshold J/ Ψ Production
- ✓ Semi-Inclusive DIS w/ polarized targets
- ✓ *NEW*: spin, eA physics, ...

SoLID ECal (Electromagnetic Calorimeter)

SoLID include two configurations:

- SIDIS (Semi-Inclusive Deep Inelastic Scattering)
- PVDIS (Parity-Violating Deep Inelastic Scattering)
- ECal re-arrange between two configurations

ECal main performance requirements

Specification	Desired performance
Energy resolution	<10%/ \sqrt{E} (GeV)
e –/ π – sepapartion	50-100:1 for above Cherenkov threshold
<i>e</i> [–] efficiency (considering high background)	>95%
Position resolution	<1 cm
Radiation resistance	>2E13 n _{eq} /cm ²
High magnetic filed	1.5 T
	C. Feng, Shandong University

Shashlyk style ECal design

 \succ Longitudinal: preshower + Shashlyk shower (2+18 X₀)

- Preshower: one layer lead and scintillator.
- Shower module: (0.5mm lead + 0.1mm reflector \times 2 + 1.5mm scintillator) \times 194 +96 WLS fibers penetrating.
- > Transversal: 100 cm² hexagon, arranged in a ring shape

ECal Material Overview

Lead sheet with reflective coating Hole punched with tool.

plastic scintillator, produced with injection mold

3M ESR film as mirror, reflectivity >98%

*instead of reflective layer between lead

WaveLength-Shifting fiber

High reflectivity, effectively improve the brightness

Irradiation test at Institute of Modern Physics, China

The performance still fine after irradiation. 7

scintillator

scintillator

scintillator

Shashlyk ECal module assembling

Scintillator tiles and leads are cross stacked in the mould, keeping pressure stable on ECal for hours.

Assembled module . Tight with nut.

Inserts fibers

Fiber end polish and module coating

fiber polished with CNC milling machine

fiber end after polished under microscope

fiber end after polished

TiO2 reflective layer

Light loss by Coupling with Clear Fiber

10-10 WLS fibers coupling to clear fibers (length 1 m) with **Fujikura** connector.

The light loss is about 30%~20%, dependent on the polishing of the fiber end.

Chunhui Fiber bundle connector

Chunhui fiber bundle connector

Here are a bundle of 500 clear thin fibers(0.5 mm diameter).

Easy to install, only one piece for one <u>Ecal</u> tower Soft, could be bend easily Radiation resistance: the same as 1mm PMMA clear fiber

Chunhui connector : light loss ~37% Clear fiber atenation has been substracted.

Test setup Light loss test for all fibers together by cosmic ray

Super-module and Performance test with cosmic ray

≻Super-module

7 modules integrated in light tight frame

Cosmic ray test with vertical muon

Calculate number of photo-electrons(NPE)

- Calculate the charge of signal
 - perform an integral over the entire waveform
 subtract the baseline from the waveform integral
- NPE = charge / (1.6 * 10E-19) / gain

Select vertical muon events

• Only one out of 7 modules has a signal, indicating nearly vertical incidence

NPE of vertical muon

The position of histograms corresponds to the module position in the frame.

Resolution = sigma/mpv

mpv

800

700

600

500

400

300

200

100

0

Λ

Time performance

Summary

- Few Shashlyk electromagnetic colorimeters has been build for SoLID experiment at Jlab.
- The irradiation hardness of main material is fine, according the test in IMP.
- Reflect layer and fiber end polish important for the photon collection efficiency.
- For MIP, light yield is higher than 500 PE for most modules, energy resolution lower than 10%.
- The super module will do beam test in future.

Thanks for your attention!