Characteristics of SiPM at various Temperature

Mamta Jangra, Gobinda Majumder, Mandar Saraf

TIFR, Mumbai, India

- Introduction to SiPM signal and noise
- Fit to extract slope
- Recovery time
- Fraction of prompt Cross talk events
- Ratio of After Pulse + Delayed Cross talk
- Conclusion

These results are based on only noise signal of SiPM, though similar study were done with LED source also.

Disclaimer : No systematic uncertainty on the results, only statistical error from number counting and/or fit.

Signal shape and noises in SiPM

Signal shapes at various overvoltage @T=20°C

- It is well known that the recovery time depends on the temperature
 - Is there any variation due to V_{OV} ?

Superimpose many data by adjusting the starting time, use $\chi 2$ criteria to remove events with correlated noises \rightarrow Reduce the fluctuation of individual signal

- Normalised wrt to V_{OV} and take ratio with respect to data at V_{OV} = 1.5V
- There are fluctuations, possible noise in electronics,....
 - But a clear trend that the shape (both raising and falling parts) depends on V_{OV}

Signals at different V_{OV}

Signal are fitted with a function which includes growth of signal and two exponential falling curves.

Variation of falling components with $V_{\rm OV}$

- Fit the signal shape, where the area and relative slope of the second component are fixed
- Similarly, parameters of rising components.
- There are correlations among all these

- Variation of $\boldsymbol{\tau}$ with temperature is well known
- But also observe a variation with $\mathbf{V}_{\mathbf{OV}}$
 - A possible explanation is that the removal of large number of hole for high gain takes longer time

Signal of SiPM with a large time scale

• Find out all these peaks and get a correlation of the pulse height of second peak and time gap

Recovery time

- Fitted signals in ∆t time window with four Gaussian functions to find the peaks of AP signals
- Fit the peak position vs Δt to get recovery time

• Range of Δt is very small as well as number of event to have accurate numbers, but

- There is no clear trends of variation in Recovery time with temperature, $\mathbf{V}_{\mathbf{OV}}$
- Need more data and better algorithm to have data with larger range of Δt

Take projection on X-axis (Δt)

Difficult to separate out DeCT & AP

DeCT + AfterPulse

- Fit the tail part with simple exponential function to get the uncorrelated noise rate
- Combined fit :
 - Exponential for Delayed CT
 - Exponential with threshold due to pulse height selection criteria as well as resolution for AP
 - Fixed parameters of Uncorrelated noise
 - Exclude area of low statistics

Uncorrelated noise rate : V_{th} = 0.5p.e.

• As expected

- Increase with Temperature as well as with $\mathbf{V}_{\mathbf{OV}}$

Fraction of After Pulse (from fit parameters)

- Change in Time scale at 15°C has a systematic shifts
- Behaviour of 4th SiPM is different than others !!
- Readings of High Temp + high V_{OV} (need to look in details)
- No increase of fraction with temperature (opposite to PromptOCT)
 - Extraction of AP from DeCT may be a possible source, or this is the feature

Fraction of DeCT+AP (Number count + Fit of Uncor noise)

• Problem with few V_{OV} at high Temperature (need to tune the algorithm)

• Nearly same trends of increase with temperature, what was observed in Prompt OCT

Conclusion

- Variation of different noise properties have been studied as a function of temperature and $V_{\rm OV}$
- Some qualitative features of those without any strong interpretations are
 - Both rise time and fall time of the spectrum varies with temperature as well as V_{OV} .
 - Did not find any variation on recovery time due to limited statistics (but, does not look like the trends, what was observed for fall time),
 - Prompt cross talk increases with temperature and depends on the initial pulse,
 - AP does not vary with Temp and
 - Combination of DeCT+AP follows the same trends of PromptOCT
- Need more data to confirm all these properties
- Need to improve the readout to distinguish DeCT and AP as well as algorithms

Prompt cross-talk (Ratio of 3rd and 2nd band)

• Expect to have large ratio wrt 2nd/1st band

• Also a small variation with temperature,

Prompt cross-talk (Ratio of 4th and 3rd band)

• Expect to have larger ratio wrt to earlier

• Overall ratios are larger, but due low larger statistical uncertainty, can not make any judgement on its trends or proportionality wrt to earlier two

Time period for Uncorrelated noise

DeCT+AP (Arbitrary scale)

After pulse rate (arbitrary unit)

Explanation of different noise rate

