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ML based reconstruction techniques for CMS HGCAL



Outline

• The High Luminosity LHC and the CMS 
High Granularity Calorimeter (HGCAL)

• Two examples of Graph Neural Network 
based reconstruction for HGCAL:
– Pion energy reconstruction in the prototype 

HGCAL testbeam (CMS-DP-2022/022)
– Hit-to-particle reconstruction in the CMS 

HGCAL (CMS-DP-2022/004)
– See Polina’s talk tomorrow for additional 

applications in CMS

• Summary
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https://cds.cern.ch/record/2815404/files/DP2022_022.pdf
https://cds.cern.ch/record/2805640/files/DP2022_004.pdf
https://indico.tlabs.ac.za/event/112/contributions/3176/


The HL-LHC: Physics motivation
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●  Runs 1 and  2 of the LHC have yielded a rich harvest of physics results (> 1000 papers) :
○ From the discovery of the Higgs boson to a detailed  study of its properties with high precision.
○ Observation of rare decays like B0

s →µ+µ-  and rare processes like heavy triple boson production

● However a decisive increase of the LHC luminosity in order to meaningfully improve on the current results 
in a reasonable timeframe:

○ O(1%) precision on SM Higgs couplings
○ Rare Higgs Decays (e.g H→μμ) and production ( e.g. HH )
○ Extending reach of BSM searches.
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https://cds.cern.ch/record/2647699?ln=en
https://link.springer.com/article/10.1007/JHEP07(2021)027


The High Luminosity LHC
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The HL-LHC challenges
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 The HL-LHC environment presents unprecedented challenges to the CMS physics program of searching for 
New Physics through Precision Measurements and Direct Searches for Rare Processes.

HIGH RADIATION(due to high integrated lumi.)
● Radiation levels up to 2x1016 neq/cm2 or    1 

Grad in the forward region or close to the 
collision point

HIGH PILEUP(due to high instant. lumi.)
● Multiple collision per event: 140--200

Simulation: Total of 3 ab-1 with 300 fb-1/year

A typical event from a 2016 High PU (<μ> = 100) run



The CMS High Granularity Calorimeter
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Key Parameters:
● The HGCAL covers  1.5 < |η| < 3.0
● 215 ton/endcap, full system at -30 C
● 620 m2 of silicon sensors in ~27k modules with       

6M Si channels
● 400 m2 of scintillators in 4k boards with                

240k scintillator channels
● Enables 5D reconstruction of particle showers

Active Elements:
● Hexagonal modules based on Si sensors in CE-E and 

high-radiation regions of CE-H
● Scintillating tiles with SiPM readout in low-radiation 

regions of CE-H

Detector Configuration:
● Electromagnetic calorimeter (CE-E) : Si, Cu/CuW/Pb 

absorbers; 26 layers, ~28 Xo and ~1.5 λ
● Hadronic calorimeter (CE-H) : Si & scintillator, steel  

absorbers; 21 layers and ~8.5 λ (including CE-E)



Pion reconstruction with the HGCAL beam test prototype
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Experimental setup of HGCAL detector prototype
• Beam test experiments of Oct 2018 at H2 Beamline, CERN
• Prototype HGCAL detector setup comprised of Si-based electromagnetic (CE-E) and 

hadronic (CE-H) sections followed by scintillator tile-based CALICE AHCAL
– Exposed to e+ and π– beams of energies ranging from 20 – 300 GeV
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For more details about instrumentation, DAQ, calibration, and simulation, please refer to 2021 JINST 16 T04001, 2021 JINST 16 T04002 and 2022 JINST 17 P05022.

https://iopscience.iop.org/article/10.1088/1748-0221/16/04/T04001
https://iopscience.iop.org/article/10.1088/1748-0221/16/04/T04002
https://iopscience.iop.org/article/10.1088/1748-0221/17/05/P05022


Detector setup and simulation
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The HGCAL beam test prototype, Si HGCAL & Scint. AHCAL,  comprised of a total of ~12k and 
~22k readout channels respectively. A detailed simulation of the detector prototype including 
the key beamline elements was developed in GEANT4.10.4.p03

CE-E
• Si sensors (1.1 cm²) + Cu/CuW & Pb 

absorbers. One  6’ hexagonal module 
(128 cells) per layer, in a total of 28 layers

CE-H
• Si sensors (1.1 cm²) + Cu/CuW & Steel 

absorbers. 12 sampling layers, 7 modules 
per layer, arranged in a daisy structure

CALICE AHCAL
• Scintillators on SiPMs (3 × 3 × 0.3 cm³)

+ Steel absorbers. 39 sampling layers



Complex nature of hadronic showers
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• Hadronic showers have electromagnetic 
(EM) (π

0
/η -> γγ ) & hadronic component.

•  The fraction of energy carried by EM 
component depends on energy of incident 
hadrons.

–  results in a nonlinear response.
• The hadronic component has some definite 

contribution from invisible energy (breaking 
up of nuclei etc.) .

• The right figure shows the simulated  
development of two showers 
induced by 270 GeV pions in a 
copper block.

• Fluctuations in energy deposited 
across the detector are due to 
fluctuations in the production & the 
energy carried by the π
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https://cds.cern.ch/record/454176/files/p347.pdf


Event displays of pion showers in HGCAL beam test prototype
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In addition to intrinsic fluctuations, transverse and longitudinal leakage of energy 
also contribute to fluctuations of the measured energy of pions.

– Transverse leakage is mostly due to single modules used in CE-E and last three layers 
of CE-H.

“Early” showering pion

“Late” showering pion



Energy reconstruction of pions - classical method
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The signal generated in each cell by the traversing particles is 
converted into energy in units of MIPs

• MIP scale is not uniform across the CE-E and 
CE-H/AHCAL because of different absorbers & sampling 
fractions.

• Detector level calibration: calibrate CE-E (CE-H+AHCAL) 
using a 50 GeV e+ (a 50 GeV π –) beam.

• χ2 method : energies deposited in CE-E, CE-H and AHCAL are combined 
using energy dependent weight factors extracted after minimizing an 
estimator defined as,

• The χ2 method in this form does not take into account the 
event-by-event fluctuations of showers and also it does not make use of 
the high granularity of the detector.



The machine learning approach
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● ML is most powerful when applied on 
low-level inputs and has recently evolved 
in efficiently using them
○ Gives model access to full information 

content of every event
○ Avoids potential for biases from human 

feature engineering

● This has been demonstrated already in 
CMS e.g. jet tagging*
○ Train on jet constituents rather than 

high-level variables

● Hence we would like to use  low-level 
calorimeter inputs, the detector hits, as 
input features

arX
iv:1909.12285

*First with deepJet: arXiv:2008.10519

https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/2008.10519


Different ML architectures : pros and cons
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● Inputs can be challenging for most architectures
○ There can be any number of hits (Due to zero-suppression, not all channels are active)
○ They can be distributed across multiple very different detector components
○ They are naturally represented in at least 4 dimensions (x, y, z, energy), more recently                      5 

dimensional hits (x, y, z, energy, time) are in use
○ They are in no particular order

● GNNs are the best option for all input types

Can it (easily) handle… BDT MLP CNN RNN GNN

Variable-size input 🇽 🇽 ✅ ✅ ✅

Complicated geometries ✅ ✅ 🇽* ✅ ✅

4D or 5D inputs ✅ ✅ 🇽* ✅ ✅

Unordered inputs 🇽 🇽 ✅ 🇽 ✅

*CNNs work best with rectangular input spaces



How do GNNs work
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1. Collection of hits is represented as a point cloud



How do GNNs work
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1. Collection of hits is represented as a point cloud
2. Generate graph by drawing edges between k nearest neighbors of 

each hit



How do GNNs work
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1. Collection of hits is represented as a point cloud
2. Generate graph by drawing edges between k nearest neighbors of 

each hit
3. Perform “message passing” to allow information to flow along 

graph edges (analogous to image convolutions in CNNs)



The Dynamic Reduction Network
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● Based on Dynamic Graph Neural Networks (1801.07829), a model is defined with the following 
differences(2003.08013v1)

○ Input features are mapped onto a higher dimensional latent space
○  Add clustering & pooling step to learn high level information iteratively

● The model is trained on a flat energy sample of 10-350 GeV with a total of 4.1M events simulated using 
GEANT4.10.4.p03 and FTFP_BERT_EMN hadronic physics lists.

● AdamW optimizer with a constant learning rate of 10-4 is used while training the model & a total of 63k 
parameters to learn in the model.

● The most time consuming step is the graph convolutions, followed by construction of the NN graph 

https://arxiv.org/pdf/1801.07829.pdf
https://arxiv.org/pdf/2003.08013v1.pdf


Energy reconstruction of charged pions using the DRN
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● In data, rechit energy in CE-E is scaled by 3.5% and in CE-H/AHCAL by 9.5% to 
account for the difference in energy scales in data and simulation (More details in 
this paper)

● The bulk of distribution between simulation & data are in fair agreement

https://arxiv.org/abs/2111.06855


Energy resolution & response
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● Dramatic improvement in energy resolution w.r.t. χ2 method
○ The scale factors in the χ2 method are calculated on average for a given pion energy and 

applied to all events with the same true energy irrespective of the shower fluctuations

● Good agreement between the DRN predictions of the energy response and the 
relative resolution between beam test data and simulation



Training the DRN with different input features
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The role of input features used to train the DRN were investigated by considering three 
combinations of these input information:

○ DRN (E) uses the energy values of all rechits as input feature
○ DRN (E, z) uses in addition the z coordinate of the rechits to allow the DRN to track the 

longitudinal development of each shower
○ DRN (E, x, y, z) using 4 input features (E, x, y, z) has full information about the longitudinal and 

transverse development of the showers.



Improvement in energy resolution with different DRN trainings
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To understand the massive improvement in energy resolution with the DRN additional trainings 
were performed with different input features. 
● The improvement from χ² method to DRN (E) comes from learning event-by-event fluctuations in EM 

fraction.
● Adding the spatial coordinates gives the DRN information about the spatial development of the shower  

→ Helps the DRN to better compensate for per event fluctuations and also learn about transverse leakage along 
with longitudinal leakage.



Illustration of what the DRN learns with event displays
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● Event displays for two representative simulated showers with the hits plotted 
according to their (x,y,z) position.
○ The color  represents the rechit energy in units of GeV using the detector-level 

calibration. Hits with >1 GeV are represented with the same color as 1 GeV.



CMS HGCAL hits → particle reconstruction

06.09.22 TIPP’2023 24



Complexity of the problem
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● HGCAL detector poses challenging problems for event reconstruction
○ ~3 million readout channels per endcap
○ ~200,000 hits per event in HL-LHC conditions

● Need to perform “particle tracking” for showers
○ Not simple helical trajectories 

● How do we go from these  >100,000 hits to collection of particles and their properties?
○ No viable pre-existing algorithm for this task

Truth-level particle associations

η

ɸ



Graph-based approach
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Huge number of channels requires novel  
computational techniques

● Modified graph architecture[1]

○ High-dimensional information is projected into 
low-dimensional space for graph generation

○ Add distance weighting to graph message passing

● Novel loss function allows identification of arbitrary 
number of particles and their energy reconstruction[2]

● Input: all 5D HGCAL hits (x, y, z, energy, time)  in a given 
event

● Output: clustering of hits into particles with corrected 
energies
○ Alternatively could apply separate dedicated corrections 

with e.g. DRN

Input fe
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[1]: arXiv:2204.01681
[2]: arXiv:2002.03605

https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2002.03605


Performance
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Gray hits are noise
Colored hits are due to individual 
incident particles

ττ gun

● Efficiently recovers hadronic and EM energy deposits
● Clear (qualitative) separation between particles
● Performance very good even in dense areas; 

○ Expected to work well for pileup, substructure, etc

CMS-DP-2022/004



Summary

• The performance of physics analyses in any experiment is intimately linked to the 
performance of the underlying detectors and the reconstruction of physics objects.

• In order to extract more from a given amount of data it is imperative that we update our 
detector reconstruction using state-of-the-art tools.

• One of the promising approaches underway in CMS in this regard is to incorporate low 
level calorimeter hits as input features into GNNs, that are uniquely suited for high 
energy physics problems.

• Today we have seen a couple of examples amongst the many being used CMS wide.

• These methods being developed are general and applicable to any detector.
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