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HL-LHC Timeline
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TileCal Overview:

○ 256 modules in the detector, with ~10,000 readout 
channels.

○ Steel absorber, plastic scintillator with wavelength-shifting 
fibers (WLS).

Detector Configuration:

○ Long Barrel (LB) for |η| < 1.0 and 2 Extended Barrels (EB) 
for 0.8 < |η| < 1.7.

Cell Structure:

○ Approximately 5000 pseudo-projective cells and each cell is 
read out by 2 PMTs.

All on-detector and Off-detector electronics will be replaced 

Calibration Systems:

○ Charge Injection Scans (CIS), Cesium-137 (Cs) calibration 
and Laser-based calibration
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Tile Calorimeter 
architecture

Context



TileCal P2-Upgrade Project

1. ATLAS Tile Calorimeter Phase-II Upgrade Technical Design Report : https://cds.cern.ch/record/2302628/
2. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC Journal of Physics, DOI:10.1088/1742-6596/928/1/012024,2017. 4

Motivated by:

○ Lifetime of Tilecal extended (HL-LHC 2029-2040).

○ Higher radiation environment  (Luminosity x 5-7 compared to  nominal LHC)

○ There is a very wide physics program defined for HL-LHC:  
https://cds.cern.ch/record/2703572/files/94-87-PB.pdf

New requirements: 

○ Active dividers on all PMT,  replacement of 10% of the PMTs.
○ Complete replacement of on and off-  detector electronics.
○ 40 MHz readout to off-detector electronics. 40 Tb/s over 6000 optical fibres.

○ New HV and LV systems and new mechanics

https://cds.cern.ch/record/2703572/files/94-87-PB.pdf


Mechanics

5

Mechanics for 
Mini-drawers

Work on Tile electronics 
on-detector

● Current arrangement houses TileCal electronics 

within drawers measuring 1.75 m in length. 

However, extracting these drawers to access the 

electronics has proven to be a cumbersome process.

● Each mini-drawer is divided into two ‘independent 

sections for cell readout, accommodating 12 PMT 

blocks readouts for 6 TileCal cells.

● 1 Mainboard, 1 Daughterboard and  1 HV 

distribution is per minidrawer, while 1 LVPS is per 

whole module

● Specialized tools for inserting and extracting the 

mechanics, along with facilitating the integration of 

new services such as LV & HV cables, fiber optics, 

and cooling distribution.



PMT blocks
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● Strategy to reuse 90% of the PMTs (Hamamatsu  

R7787), and use 10% of new R11187 in the most 

exposed region of the detector.

● To enhance response stability at high anode 

currents, the current passive HV dividers will be 

substituted with active dividers.

● New front end card, the FENICS:

● Pulse shaping occurs at two gains (x0.4, x16), 
enabling a dynamic range spanning from 0.2 pC to 
1000 pC.

● Current integration with 5 gains (0.02-13000 nA)  

for 137Cs calibration and luminosity studies.

● Built-in Charge Injection system for ADC  

calibration but to calibrate the whole FE 

electronics.

● Dedicated test-benches to qualify the 

re-assembled PMT blocks are being prepared at 

Clermont-Ferrand.

New active HV 
dividers

New FENICS front 
end

Hamamatsu 
PMT

Pulse shape in HG 
from  2022 
test-beam data

Test-benches to re-qualify



MainBoard
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● Receives and digitises the analog signals from 12 FENICS

● 12 bit dual ADCs at 40 Msample/s for 2 gain signals.

● 16 bit ADC at 50 ksample/s for integrated signal readout.
● Routes the high speed data to the DaughterBoard.

● Distributes power (10 V), independently on each side 

(improves reliability) to all on detector electronics test 

bench is at U. Chicago.

● Production is now close to complete (845 boards out of 896 

boards).

FENICS analogue  
connector

FENICS digital  
connector

B-side

A-side

FPGAFPGA

FPGA FPGA

DaughterBoard  
connection

Test bench for Mainboard



Daughterboard
● Collects the digitised data from the  MainBoard.

○ High speed interfaces to off-detector 
electronics  through optical links.

○ Data transmission to preprocessors - 4 
uplinks at 9.6Gbps

○ Uses 2 GBTx chips for clock recovery  and 
distribution -2 downlinks at 4.8Gbps 

○ 2 Kintex Ultrascale FPGAs

○ 2 SFP high-speed optical modules
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● Design of v7 DB almost complete

○ Larger package of FPGA’s for improved pin-out

○ More simplified power scheme and fixing few 
bugs



Pre Processor: Off detector
● TilePPr is responsible for detector readout and 

trigger pre-processing

● Handling and pipeline of data from on-detector 

electronics

● Provides accelerator clock and configuration to the 

on-detector electronics.

● The TilePPr is controlled and monitored  through the 

TileCoM custom mezzanine.

● PPr+TDAQi transmit timing and control to  the 

On-detector electronics, process the data  to 

compute energies and prepare trigger  primitives for 

the Calorimeter

● 4 Compact Processing Modules undertake online 

energy reconstruction, calibration, and transmission 

to TDAQi.

Compact Processing Module (CPM)
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ATCA carrier boards



Trigger DAQi 
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● TDAQi receives cell energies from 4 CPMs synchronously from the 

CPMs to FELIX system. 

● Provides trigger primitives for the ATLAS  trigger system for ‘per 

bunch cross.

○ Interfaces with L0Calo, L0Muon and Global trigger

● TDAQi-v3 design complete

● Xilinx Kintex Ultrascale Kintex+ (XCKU15P)

● 1 FireFly B04 for FELIX (4 bi directional channels)

● 4 Firefly T12 for Trigger interfaces (12 TX channels)

● 1 SFP for debugging purposes

TDAQi v2 eye diagram at 9.6Gbps Trigger DAQ interface (TDAQi)



Low and High Voltage systems
Low Voltage

● The Radiation environment on detector requires Rad-Hard 

DC-DC converters.

● 200 VDC is transformed to 10 VDC to power the Point of  

Load regulators on the on-detector electronics boards.

● The DC/DC converters are controlled by custom made  

AUX_Board located in the underground counting room.

● ELMB chip is used as CANbus interface to transfer monitored 

data.

● There are strong constraints in terms of radiation  tolerance, 

noise, power efficiency and reliability.

High Voltage

● The High Voltage supplies are located in the  underground 

counting rooms at 100 m of the detector.

● Alleviates radiation issues and facilitates maintaining.

● Good linearity of the supply chain to 100 µA, we expect  40 

µA max. There is one HV channel for each PMT.

LV power distribution 
scheme.

A low voltage 
brick

Burn-in test 
bench

prototype HV supply 
board

On-detector HV distribution board
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Calibration systems
● New electronics based EMP/EMCI boards will be 

used with 3U  and 6U custom boards for 
controlling the full Cs system and for  data transfer 
to DCS.

○ Design of all boards is ready, all prototypes 

produced and under test.

○ EMP firmware development is in progress.

○ NIELs tests were performed last autumn, SEU 

tests were performed  this spring, TID tests are 

running right now.

Laser System

● New Data Acquisition and control electronics is needed for 

the laser  calibration system.  

● Prototype of the ILANA board (laser control and new 

TDAQ interface) under validation tests at CERN New custom laser DAQ 
board.

Explorer One 
laser

New Cs electronics prototype
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Cesium System



● 12 beam test campaigns were performed in the SPS-H8 beam 

line between 2015 and  2023 to validate the hardware and 

perform physics studies

● Different designs of the front-end  electronics have been 

used over the years

● The setup is partially equipped with new  electronics, the 

remainder with the current  electronics

● We used electron, muon and hadron  beams, of various 

energies and the detector  positioned in different orientation

● Cherenkov detectors, part of the beam  instrumentation 

allow for particle ID

Test-beam at SPS-H8 beam line
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TileCal setup in the SPS-H8 
beam-line.

Cherenkov 1 signal vs. the energy 
measured in the calorimeter for 18 
GeV particle beams

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/GeV


Some Test Beam results
● Muons results

○ On top, results from 160GeV/c Muons at 90º  

angle, with new electronics (May 2018  

campaign). The deposited energy is a function of 

the path  length in each cell.

○ Layer uniformity within 1%, very good  

agreement of data and simulations.

● Electron results

○ Electrons to determine the  calorimeter 

response (pC/GeV factors) at EM  scale.

○ We could verify the response linearity and the  

energy resolution as function of the electron  

energy.

● Hadron results

○ The hadron beams are used to check  

the response for hadrons and improve  

our understanding of jets and taus in  

ATLAS.

● The beam composition is a mix with a  

majority of π, K and protons.
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Summary

● The extended requirements of the HL-LHC demand an extension of the detector's 
lifespan, which comes with new challenges.

● A harsher radiation environment,  higher pile-up, higher luminosity and readout rates
● For this we will replace all on- and off-detector electronics and 10% of the PMTs in LS3 

(2026-2028)
● New mechanics and electronics more radiation hard, more reliable and  easier to service.
● New digital readout and trigger path, ready for 1 MHz first level trigger rate.
● Regular test-beam campaigns throughout the project helped validate designs 
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Thank You Very Much!
Email: 
edward.khomotso.nkadimeng@cern.ch 

mailto:edward.khomotso.nkadimeng@cern.ch
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● Signal Shaping and Sampling:

○ The signal from the PMT undergoes shaping 

and is sampled every 25ns.

● Phase Definition for Random Phase Pulses:

○ Due to lack of synchronization between 

electronics and the clock, arriving pulses 

exhibit random phase relative to the clock.

○ To handle this, the phase is defined as the 

offset of sample number 4 from the pulse 

peak.

● Reconstruction:

○ Reconstruction involves determining 

amplitude A (energy), phase 𝑇 (timing), and 

quality factor QF.

● Fit Method:

○ One reconstruction method employs fitting 

the pulse using a specific formula.

● Optimal Filter Method:

○ Another method involves utilizing an optimal 

filter for the reconstruction process.

Pulse arriving 
in  phase with 
respect  to 
the clock

Pulse 
arriving  
out phase
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Signal reconstruction


