Demonstration of the 25 ps single-photon time resolution of an RPC-based gaseous photodetector

<u>Ryogo Okubo^a</u>, Kodai Matsuoka^{abc}

^aGraduate School of Science, Nagoya University ^bHigh Energy Accelerator Research Organization(KEK) ^cGraduate Institute for Advanced Studies, SOKENDAI

<u>K. Matsuoka, R. Okubo, Y. Adachi,</u> Nucl. Instrum. Methods Phys. Res. A, Volume 1053,2023,168378

Introduction: What is Gaseous photomultiplier (GasPM)?

2/14

Set up of the time resolution test

Detailed detector response to single photons

Future plans

Summary

Introduction

High time resolution, **large area** are recent trends for Cherenkov and scintillation detectors in particle physics and nuclear experiments, for example, TOP counter at Belle II, RICH detector upgrade at LHCb, and future upgrade...

Single-photon Sensitive area Cost / area time resolution SiPM (FBK near ultra violet, NUV)¹ $3 \text{ mm} \times 3 \text{ mm}$ $\sigma = 63.9 \text{ ps}$ Middle $1'' MCP-PMT^2$ $\sigma = 30 \text{ ps}$ $23 \text{ mm} \times 23 \text{ mm}$ High (Hamamatsu, Channel diameter= $10 \mu m$) 373 cm^2 8" MCP-PMT(LAPPD)³ $\sigma = 60 \text{ ps}$ Middle (volume cost) ¹https://doi.org/10.1088/1748-0221/11/10/P10016 XSiPM: Silicon Photo Multiplier ²https://journals.jps.jp/doi/abs/10.7566/JPSCP.27.011020 **XMCP-PMT**: Micro Channel Plate Photo-Multiplier Tube ³https://arxiv.org/abs/2212.03208 X LAPPD: Large Area Picosecond Photo-Detectors

Performance of existing photodetectors

A photodetector with lower cost while keeping time resolution and area is necessary! We aim to realize a photodetector with a better time resolution, larger area, and lower cost.

GasPM

How to realize a photodetector with a high time resolution, large area, and low cost?

Gaseous detectors

 \rightarrow Have advantage in scale and cost

How to achive high time resolution

- 1.Uniform structure
- 2. High electric field and narrow gap
- \rightarrow RPC–based photodetector with a narrow gap

1st prototype of GasPM

Developed the first prototype targeting to demonstrate its high time resolution

LaB6 photocathode

Low QE , but stable performance in gas and the air. \rightarrow Easy assembly

TEMPAX resistive plate

High resistivity ($10^{15}\Omega\cdot cm$)

 \rightarrow To concentrate on the timing performance without being disturbed by discharge in the gap at all.

Prototype parameters

- Gap width 170 μm
- Gas: R134a 90%, SF₆ 10%
- Applied voltage: 3 kV (176 kV/cm)
- Sensitive area: 36 mm×36 mm

Prototype

Prototype design

Expected time resolution

Time resolution measurement

Set up

Laser

Picosecond pulse laser with short wavelength and large intensity that is suitable for this measurement

- Wavelength: 375 nm
- Average Power: 1 mW
- Pulse width: 21.8 ±0.5 ps

• Repetition rate : 100 MHz

Laser signal detection rate: 0.02 Hz \rightarrow Single photon Random noise rate : 0.3 – 1 Hz

DRS4 evaluation board

Wave form readout with

- a good time resolution.
- Sampling rate: 5 G samples / sec
- Analog bandwidth: 700 MHz
- Measured time resolution in this setup: 14.0 \pm 0.3 ps

6/14

GasPM waveform

Typical waveform (amplified by 27dB)

Response to single photons

Gain	3.3×10^{6}
Rise time	1 ns

Signal timing determination by fitting

Determine the signal timing as the time when the rising edge reaches half of the maximum voltage

Output charge and timing distribution

It was found that the signal timing shifts depending on the charge, and laser signals have three components, Main, Delayed, and Further delayed.

 \rightarrow Performed the fitting and extracted the yield of each component.

YieldRatio of the
signal componentMain 3224 ± 64 1delayed 752 ± 48 0.23 ± 0.02 Further-delayed 394 ± 47 0.12 ± 0.01

The cause of the "Delayed" signals

Multi-pulse signals

Observed multi-pulse signals when the pulse height is large. \rightarrow Can be the cause of the timing delay.

9/14

Averaged waveform

Because the timing of 2 pulses is as close as about 500 ps, many "Delayed" signals look as a single pulse.

However, on average, "Delayed" signals have a slower rising edge. It is because of the multi-pulse.

Photon feedback

Photon feedback

Secondary avalanche from UV light due to the gas excitation and deexcitation.

Photon feedback occurrence under the assumption of a Poisson model using the ratio of the signal component: 0.30 ± 0.02 .

Main

Delayed 1 photon feedback

Further Delayed

2 photon feedback

Time resolution of GasPM

Time resolution

 $\sigma = 36.0 \pm 0.9$ ps at the main peak. Laser width: 21.8 ± 0.5 ps (Measured by a streak camera) Read out time resolution: 14.0 ± 0.3 ps

 \rightarrow 25.0 \pm 1.1ps w/o laser width and read-out resolution Better than MCP-PMT

($\sigma = 30 \text{ ps}$ (Channel diameter =10 μ m))

Demonstrated the high time resolution of GasPM!

Future development plan

Practical photocathode sensitive to visible light

A new photocathode with high gas resistance and high quantum efficiency is necessary for GasPM. If the photocathode is sensitive to visible light, GasPM can be used more widely for example, Cherenkov ring imaging detectors or scintillation counters.

12/14

Countermeasure to the photon feedback signals

1. Photon feedback occurrence depends on the gas mixtures

 \rightarrow Test GasPM with various gas mixtures.

2. Readout with better sampling rate

→ The current readout system has 5GSPS (250 ps/step) of the sampling rate, but photon feedback signals can be identified from the main signals by using a readout with a higher sampling rate.

13/14 Application of GasPM as a Cherenkov timing detector

Detect Cherenkov light with <u>CsI photocathode</u>

Design of the protype

2 mm MgF₂ window
Csl photocathode: High gas resistance, Sensitive to UV light →
Suitable for Cherenkov light detection.

Expected performance

7 photons/ track (with 2 mm MgF_{2,} QE(CsI)=20% at 160 nm)

 \rightarrow

Detection efficiency : 100%

Time resolution : $\sigma = \frac{25}{\sqrt{N}}$ ps (9 ps w/ 7 photon)

Developed the first prototype, and plan to perform a beam test in this year!

Summary

Gaseous photomultiplier is a photodetector that have three advantages, high time resolution, large-area, and low-cost.

Single photon response of GasPM

- Demonstrated that GasPM has an excellent single photon time resolution of 25.0 ± 1.1 ps.
- Some of the signals have a delayed timing and a large charge due to photon feedback.

Future development plan

- Developing a Cherenkov timing detector using GasPM.
- Developed the first prototype, and planning to test it.

GasPM has the potential to be a key technology in future particle physics experiments because of its time resolution, costs, and area!

<u>K. Matsuoka, R. Okubo, Y. Adachi,</u> Nucl. Instrum. Methods Phys. Res. A, Volume 1053,2023,168378