

Neutrinoless double beta decay search with the AMoRE-II experiment

SeungCheon Kim (Center for Underground Physics (CUP), IBS) <u>sckim@ibs.re.kr</u>

On behalf of the AMoRE collaboration

TIPP 2023 (7Sep2023)

AMoRE

Searching for neutrinoless ββ decay of ¹⁰⁰Mo with cryogenic calorimeters

-84

-88

-90

-86 -100 Mo

 Q_{BE}

42

¹⁰⁰Tc

43

¹⁰⁰Ru

44

Ζ

45

- Some even-even nuclei more tightly bound than their odd-odd neighbors Single β forbidden but $\beta\beta$ allowed
- Two modes: $2\nu\beta\beta$ (T~10¹⁸-10²⁴ yrs), $0\nu\beta\beta$ (T>10²⁶ yrs)
- Probing Majorana nature of neutrinos
- ∆M /MeV • Lepton number violating process: $(A, Z) \rightarrow (A, Z+2) + 2e^- + Q_{\beta\beta}$ Beyond Standard Model, Lepton / Baryon asymmetry
- Absolute neutrino mass scale
- New physic search with the precision measurement of ββ spectrum
- ¹⁰⁰Mo nuclide:

high Q-value = 3.034 MeV (ROI), relatively high natural abundance = 9.7%relatively high decay rate expected

AMoRE detector measuring ββ energy in scintillating molybdate crystal with MMC

AMoRE experimental campaigns

AMoRE-I data taking just completed last May!

- Data taking for 29 months
- Compared to AMoRE-pilot:
 - Same cryogen free dilution refrigerator at Y2L
 - More stable detector operation with two-stage temperature control
 - Enhanced shielding: enhancement in Pb, boron, PE, μ -veto coverage, Rn-free air supply
- Exposure: 8.02 kg_{XMO}·yr = 3.88 kg_{Mo-100}·yr
- Anti-coincidence:

coincidence at multiple crystals within 2 ms, 10 ms after muon veto signal 20 mins after $^{\rm 212}{\rm Bi}~\alpha$ candidates

- α rejection in ROI: light/heat ratio, PSD
- Energy resolution in ROI: 9.5 28.0 keV FWHM

AMoRE-I results

Q = 3.034 MeV

AMoRE-II is coming!

- Intensive detector R&D
- Detector production
- Preparation of the cryostat system
- Building the experimental hall
- Building the detector housing with shield and muon veto

Simulation study of the expected background

Detector R&D efforts

- Cryogenic calorimeter with Li₂MoO₄ (LMO) crystal using MMC readout
 - humidity exposure, crystal size, surface treatment, thermal link, AMoRE-II holder
- Test results with AMoRE-II holder at cryogen-free DR
 - Large individual detector mass: 300 & 516 g
 - Energy resolution: FWHM@2.6MeV = 7-9 keV at 10 mK
 - Alpha particle discrimination with light signal: lpha rejection by more than 10 σ
 - Rise time of event signal : ~ 5ms (10 mK), ~3ms (20 mK)
 - Pile-up background (ROI) < 3×10^{-5} cnts/keV/kg/year

Detector R&D efforts

- Improving the light detector performance
- Some highlights for the AMoRE-II light detectors tested at CR-DR
- Baseline design: Si wafer (D = 5, 6 cm, t = 280, 350 μ m) with SiO₂ coating with MMC readout
- Baseline energy resolution: FWHM = ~100 eV at 10 mK
- Clear separation of X-rays and scintillation lights
- Scintillation light measurement : 0.8 0.95 keV/MeV
- Clear separation of alpha signals with light/heat ratio
- Rise time of the event signal : 300 600 μ s at 10 mK

AMoRE-II detector production

- Detector parts: mixture of cylindrical crystals, 5 cm (D) x 5 cm (H) & 6 x 6 MMC (Ag:Er) by CUP (IBS) & Heidelberg Univ. Two-stage DC SQUID by PTB & Heidelberg Univ. NOSV Cu frame
- Detector assembly in low humidity and radon-free environment
- Building in two stages
 Stage 1: 90 modules in 2024
 Stage 2: 360 modules in 2025

Crystal production

- Li₂MoO₄ : easy crystal growing, low background, but hygroscopic surface
- 120 kg of ^{100}Mo as $^{100}MoO_3$ powder in storage
- Powder (¹⁰⁰MoO₃, Li₂CO₃) purification at CUP
- Crystal growing in NIIC & CUP
- Low background level demonstrated with the powder and crystals
- Crystals for stage 1 complete, full production through 2025
- Vacuum sealed packaging, very low humidity for crystal storage in fab process
- Proper cleaning necessary for phonon collector deposition

MoO₃ powder ∖ Activity (µBq/kg)	Raw	Purified	
Ac-228	260 ± 50	< 27	
Th-228	210 ± 50	< 16	
Ra-226	260 ± 50	110 ± 30	
K-40	8500 ± 1400	1700 ± 340	

Front. Phys. 11, 1142136 (2023)

AMoRE-II cryostat

- Cryogen-free dilution refrigerator with 3 PTR by Leiden cryogenics
- Cooling power: 1mW@100 mK, 7μ W@ 10 mK
- Base temperature: 5.3 mK
- Commissioning and wiring underway
- Vacuum and thermal shield cans with low radioactive material almost complete

AMoRE-II cryostat vibration damping

Suspending the detector array with 4 strings in IVC

Each string: STS rod (durable up to 3.8 ton) + kevlar wire system (2.4 ton)

R

Other vibration reduction efforts: Soften PTR contact on the fridge (absorbing foam, Cu tapes) Internal vibration damper between 4K & still3stage

Jeongseon, South Korea 1000 m vertical depth Underground lab for basic sciences Opened in Oct, 2022

Total Area: 2600 m² Sufficient area for new large scale experiments: AMoRE, COSINE, LSC

AMoRE Hall in Yemilab

Shield structure

Radon-free air supply Clean room (detector preparation in class 100)

Muon veto detectors in commissioning

Water Cherenkov detector

~60 ton of water Testing DI water / 4-MU loaded water Installed with 49 x PMTs (8 & 10 inch) Good neutron shield

Plastic scintillator

One PS box: 2 plastic scintillator panels + wavelength-shifting fiber + 4 SiPMs Total 136 boxes muon flux measurement $\approx 10^{-7}$ cm⁻²s⁻¹

Recent view of AMoRE Hall

F

17

Expected background level

AMoRE-II prospects

• $T_{1/2}^{0\nu} \sim 4 \times 10^{26}$ years (3 σ discovery) with background of 10⁻⁴ cnts/keV/kg/year 5 years after full detector array installation

• $\langle m_{\beta\beta} \rangle \sim 20-35~{\rm meV}$

Conclusion

- AMoRE-I data taking completed in last May
 - $T_{1/2}^{0\nu}$ > 3.4 x 10²⁴ years at 90% C.L.
 - World best limit for 0
 uetaeta of ¹⁰⁰Mo
- Gearing up for the AMoRE-II experiments with 100 kg of ¹⁰⁰Mo isotopes
 - Improved detector performance in heat & light channel signals
 - Detector production underway
 - Cryostat system under preparation
 - New experimental hall ready in Yemilab
 - Shielding installed and muon veto under commissioning
 - Background reduction campaigns with rigorous radioassay and simulation: ~10⁻⁴ cnts/keV/kg/year achievable
 - AMoRE-II is happening! Stage 1: 90 detector modules in 2024 Stage 2: Full detector array in 2025 Aiming at $T_{1/2}^{0\nu} \sim 4 \ge 10^{26}$ yr (3 σ discovery potential) in 5 year operation

Extra

Where $0\nu\beta\beta$ happens?

Rev. Mod.Phys. 95, 025002

Isotope	Daughter	Q_{etaeta}^{a}	$f_{\mathrm{nat}}{}^{\mathbf{b}}$	$f_{ m enr}{}^{ m c}$	$T_{1/2}^{2\nu\beta\beta d}$	$T_{1/2}^{0\nu\beta\beta_{e}}$
		[keV]	[%]	[%]	[yr]	[yr]
^{48}Ca	⁴⁸ Ti	4267.98(32)	0.187(21)	16	$(6.4^{+0.7}_{-0.6}(\text{stat})^{+1.2}_{-0.9}(\text{syst})) \cdot 10^{19}$	$> 5.8\cdot 10^{22}$
76 Ge	76 Se	2039.061(7)	7.75(12)	92	$(1.926 \pm 94) \cdot 10^{21}$	$> 1.8 \cdot 10^{26}$
82 Se	⁸² Kr	2997.9(3)	8.82(15)	96.3	$(8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})) \cdot 10^{19}$	$> 3.5 \cdot 10^{24}$
96 Zr	⁹⁶ Mo	3356.097(86)	2.80(2)	86	$(2.35 \pm 0.14(\text{stat}) \pm 0.16(\text{syst})) \cdot 10^{19}$	$> 9.2 \cdot 10^{21}$
¹⁰⁰ Mo	¹⁰⁰ Ru	3034.40(17)	9.744(65)	99.5	$(7.12^{+0.18}_{-0.14}(\text{stat}) \pm 0.10(\text{syst})) \cdot 10^{18}$	$> 1.5 \cdot 10^{24}$
¹¹⁶ Cd	¹¹⁶ Sn	2813.50(13)	7.512(54)	82	$(2.63^{+0.11}_{-0.12}) \cdot 10^{19}$	$>2.2\cdot10^{23}$
130 Te	¹³⁰ Xe	2527.518(13)	34.08(62)	92	$(7.71^{+0.08}_{-0.06}(\text{stat})^{+0.12}_{0.15}(\text{syst})) \cdot 10^{20}$	$>2.2\cdot10^{25}$
136 Xe	¹³⁶ Ba	2457.83(37)	8.857(72)	90	$(2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{syst})) \cdot 10^{21}$	$> 1.1 \cdot 10^{26}$
¹⁵⁰ Nd	^{150}Sm	3371.38(20)	5.638(28)	91	$(9.34 \pm 0.22(\text{stat})^{+0.62}_{-0.60}(\text{syst})) \cdot 10^{18}$	$>2.0\cdot10^{22}$

AMoRE's choice, ¹⁰⁰Mo:

- high Q > 2.6 MeV, ROI in the region of low natural background
- Relatively high natural abundance
- Relatively high decay rate expected

AMoRE detector

Light channel

Stabilization heater

Heat channel

Energy Calibration

Particle Identification (PaID)

· CMO shows better discrimination power thanks to a higher light yield.

 ε_{PaID,ROI} – 92.9~99.2 % with ±3 median absolute deviations (MAD) range of PSD & L/H (91.6 % if normally distribution that ±3 MAD (~±2σ) gives 95.70 % C.L.)

ROI estimation

Detector fabrication on-going

Fabrication of MMC

Fabrication of SQUID

Intensive sensor tests underway

Detector absorber + phonon collector

Heat detector (Crystal) Production will follow soon!

Fabrication of light detector

- Pb 26 cm over the crystal towers, below the mixing chamber plate in IVC.
- Bottom: boric acid rubber 1 cm < Cu 2 cm
 Pb 25 cm < boric acid rubber 1 cm
 polyethylene 70 cm
 - < Plastic scint. µ-counter
- Top: boric acide rubber 1 cm < water cherenkov µ-counter 70-80 cm.
- Muon rate $\simeq 10^{-7}$ cm⁻² s⁻¹.
- Radon-free air supply.

Expected background level

$b\sim 10^{-4}$ ckky, $\Delta E=10$ keV FWHM

