September 7th, 2023

Tracking-detector design for a multi-TeV Muon Collider

on behalf of the Muon Collider Physics and Detector group

(a) INFN Torino (Italy) (b) CERN (Switzerland)

N. Bartosik (a, b)

Big question for particle physics today: which collider to build next?

Several requirements have to be satisfied:

- energy reach exceeding that of the LHC by a large factor
- enable Standard Model precision measurements
- have small size \rightarrow reduced construction cost
- low energy consumption \rightarrow sustainable operation

Muon Collider combines advantages of the two types of machines: **high precision** of e⁺e⁻ colliders + **high energy reach** of pp colliders

- like e^{\pm} , μ^{\pm} are elementary particles \rightarrow creating "clean" co
- \times 200 higher mass $\rightarrow \times 10^9$ less synchrotron radiation \hookrightarrow can fit in a compact ring (27 km circumference for \sqrt{s}

At $\sqrt{s} \ge 3$ TeV Muon Collider is the most energy efficient machine providing rich physics from $\mu^+\mu^-$ collisions and VBF processes

Nazar Bartosik

Tracking-detector design for a multi-TeV Muon Collider

Muon Collider: a promising discovery machine

For the beam density of 2×10^{12} muons/bunch

BIB intensity and composition depend on:

- beam parameters (energy, size, rate)
- accelerator layout (magnets, shielding)

Machine-Detector Interface (MDI) is crucial for absorbing as much of BIB particles as possible

The most studied case uses $\sqrt{s} = 1.5$ TeV design by MAP now being iterated with FLUKA simulations

- tungsten nozzles with BCH cladding
- 10° opening angle *(limiting the forward acceptance)*

 \rightarrow new MDI designs are under development focusing on $\sqrt{s} = 3$ TeV and $\sqrt{s} = 10$ TeV

Beam Induced Background: the critical challenge

- huge number of decays per metre of lattice \rightarrow e.g. 4.1×10^5 at $\sqrt{s} = 1.5$ TeV
- Secondary/tertiary particles interact with the lattice \rightarrow producing **Beam Induced Background** (BIB)

BIB properties: overview

BIB has several characteristic features useful for its suppression

- 1. Predominantly very soft particles (~10 MeV) except for neutrons uniformly distributed in space \rightarrow not like signal-like tracks or jets └→ conceptually different from pile-up contributions at the LHC
- **2.** Significant spread in time (few ns + long tails up to a few μ s) $\mu^+\mu^-$ collision time spread: 30ps at $\sqrt{s} = 1.5$ TeV (≤ 20 ps at $\sqrt{s} = 3$ TeV) → allows out-of-time hit rejection
- **3.** Strongly displaced origin along the beam crossing detector surface at a shallow angle → affects charge distribution + time of flight

Dominant contributions in the Tracker:

- \rightarrow radiation damage neutrons
- photons creating secondary electrons
- creating background hits electrons \rightarrow

Nazar Bartosik

d_z = 15cm

50

10⁶

Tracking-detector design for a multi-TeV Muon Collider

200

250

150

100

3

neutrons

photons

electrons

4

Tracking detector: baseline layout

Current Tracker model based on the CLIC design without specific technology implementations

Silicon sensors with high spatial and timing resolution

- **Outer Tracker**
- Inner Tracker
- **Vertex Detector**

 $50 \,\mu\text{m} \times 10 \,\text{mm}$ $\sigma_t = 60 \,\text{ps}$

- $50 \,\mu\text{m} \times 1 \,\text{mm}$
- $50 \,\mu\text{m} \times 50 \,\mu\text{m}$ $\sigma_t = 30 \,\mu\text{s}$ $\rightarrow \sigma_{UV} = 5 \mu m \times 5 \mu m$

Double layers in the Vertex Detector for BIB rejection using stub filtering

Magnetic field: $B = 3.57 T \rightarrow optimised for \sqrt{s} = 1.5 TeV$

→ expected to change for higher centre-of-mass energies

Nazar Bartosik

Tracking detector: BIB environment

At the LHC we are used to backgrounds primarily from pile-up *pp* collisions → real tracks pointing at displaced vertices

Event at the CMS experiment with 78 reconstructed vertices

At the Muon Collider background tracks are not reconstructable

A cloud of looping tracks from soft electrons: <p_T> = 3.5 MeV ►

Creates tremendous combinatorics for the classical outward track reconstruction

Nazar Bartosik

Fast timing: the potential

Raw hit density in the Vertex Detector is unsustainable → up to 5K hits/cm² in a 15 ns time-integration window

State-of-the-art time resolution enables narrow time windows comparable to the time spread of the beam crossing

Exact time windows tailored to the sensor's position subtracting a photon's time of flight (TOF_{photon}) from IP

Substantial number of BIB hits arriving earlier than TOF_{photon} created by particles exiting from the nozzle close to the sensor

A hit from an early BIB particle would make the pixel blind to the potential signal particle

Hit density: spatial distribution

Background density varies across the tracker \rightarrow highest close to the tungsten nozzles (after time filtering)

Nazar Bartosik

BIB origin: spatial distribution

Majority of the hits (up to 90%) created by primary electrons coming from the MDI outer surface

Primary electrons

Primary photons

Further away from IP <u>secondary electrons</u> become dominant Slight adjustments in MDI design can have great impact

Nazar Bartosik

Tracking-detector design for a multi-TeV Muon Collider

Resistive Silicon Detectors (RSD)

Total material budget must be kept as low as possible: sensor + readout + cooling + support

Nazar Bartosik

Sensor technology: granularity + resolution

After reading out so many hits \rightarrow how do we reconstruct actual tracks? BIB tracks are not reconstructable, but combinatorics is huge

Combinatorics can be reduced dramatically by exploiting hit directionality selecting stubs from double layers pointing towards the interaction point

Hit pairing done in two angular dimensions:

- $\Delta \theta$ limited by the length of the interaction-region + vertex displacement ullet $\sigma_z = 10 \text{ mm}$ at $\sqrt{s} = 1.5 \text{ TeV} \rightarrow 1.5 \text{ mm}$ at $\sqrt{s} = 10 \text{ TeV}$
- $\Delta \phi$ limited by the lowest track p_T ullet

Nazar Bartosik

Angular filtering: combinatorics

~2 days/event $\rightarrow \sigma_Z = 10 \text{ mm beamstop}$ → precisely known vertex position **Reduction of combinatorics** has a huge impact on the event-reconstruction speed

Realistic digitisation of pixel sensors to study cluster-based BIB rejection

BIB particles crossing sensors at shallow angles \rightarrow larger clusters \triangleright

Increasing strength of the magnetic field

- low-p_T BIB tracks contained in a smaller radius
- enhanced rejection of BIB stubs in $\Delta \phi$

Further **MDI-optimisation** using full simulation with realistic digitisation for fast feedback

→ potentially reducing TID and occupancy

Adopting ACTS tracking software for faster computational performance

→ targeting full 4D track reconstruction with hit time in the Kalman filter for early rejection of fake track candidates

Most of the fake tracks already suppressed using conventional methods

sufficient physics performance, but too slow at the moment

Nazar Bartosik

Additional handles

Towards $\sqrt{s} = 3 - 10$ TeV: ongoing studies

Comprehensive experiment designs are being developed for $\sqrt{s} = 3TeV$ and 10 TeV with optimisation studies of the MDI + detector happenning together

Example: cluster-shape filtering less effective at $\sqrt{s} = 10$ TeV (BIB is more central) **BUT time filtering is more effective** (different time structure of BIB hits)

Expecting further improvement with a dedicated MDI design

→ establishing fast feedback loop from the full detector simulation in GEANT4 for MDI studies

Nazar Bartosik

Extensive simulation studies ongoing for a Muon Collider program at $\sqrt{s} = 1.5 / 3 / 10$ TeV with a coordinated effort between the machine-detector-interface and detector groups

Tracking Detector is a crucial component for nearly any physics analysis with the most challenging requirements in the Vertex Detector

Beam Induced Background (BIB) introduces unprecedent hit density making generic readout and track-reconstruction schemes highly inefficient

State-of-the-art timing resolution combined with fine spatial granularity are necessary for efficient on-detector BIB rejection

Overall material budget in the Tracker region must be minimised to limit the production of secondary soft electrons

R&D of many relevant technologies are ongoing under <u>ECFA DRD</u> program outlined in the dedicated note: arXiv:2203.07224

Up to now most studies performed on the $\sqrt{s} = 1.5$ TeV case for a connection with the previous MAP studies

Realistic Muon Collider designs foresee $\sqrt{s} = 3$ TeV and $\sqrt{s} \ge 10$ TeV but no dramatic changes in BIB characteristics are expected

Muon Collider will operate at ~100 KHz bunch-crossing rate leaving plenty of time for data-processing (10µs)

Radiation levels do not exceed those at HL-LHC ~1 MRad/year TID + ~10¹⁵/year 1 MeV n. eq. fluence in the tracker

Dedicated publications on physics and detector prepared as part of the Snowmass '21 process:

- Muon Collider Physics Summary | <u>arXiv:2203.07256</u>
- Simulated Detector Performance at the Muon Collider | <u>arXiv:2203.07964</u> •
- Promising Technologies and R&D Directions for the Future Muon Collider Detectors | <u>arXiv:2203.07224</u>

Technical side of detector simulations for the Muon Collider | <u>Comput.Softw.Big Sci. 5 (2021) 1, 21</u> Special **INST issue** on Muon Accelerators for Particle Physics

Nazar Bartosik

Backup: detector

- Tracking-detector design for a multi-TeV Muon Collider

Muon Collider accelerator parameters

Parameter	$\sqrt{s} = 1.5 \text{ TeV}$	$\sqrt{s} = 3 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$
Beam momentum [GeV]	750	1500	5000
Beam momentum spread [%]	0.1	0.1	0.1
Bunch intensity	$2\cdot 10^{12}$	$2.2\cdot 10^{12}$	$1.8\cdot 10^{12}$
$\beta_{x,y}^*$ [cm]	1	0.5	0.15
ϵ_{TN} normalised transverse emittance [$\pi \mu m$ rad]	25	25	25
ϵ_{LN} normalised longitudinal emittance [MeV m]	7.5	7.5	7.5
$\sigma_{x,y}$ beam size [μ m]	6	3	0.9
σ_z beam size [mm]	10	5	1.5

Integrated luminosity targets: 10 $ab^{-1}at\sqrt{s} = 10$ TeV + potentially 1 $ab^{-1}at\sqrt{s} = 3$ TeV with instantaneous luminosity of ~10³⁴ - 10³⁵ cm⁻² s⁻¹

Nazar Bartosik

Tracking-detector design for a multi-TeV Muon Collider

Backup: Vertex Detector layout

Backup: Magnetic Field effect

Nazar Bartosik

Tracking-detector design for a multi-TeV Muon Collider