

Development of CMOS Pixel Sensor prototypes for the CEPC vertex detector

Ying Zhang*

On behalf of the CEPC Vertex detector study team *Institute of High Energy Physics, Chinese Academy of Sciences

CEPC Vertex detector requirements

The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community in 2012.

Efficient tagging of heavy quarks (b/c) and τ leptons

→ Excellent impact parameter resolution,

10

$\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2})}$	(μm)
	Baseline layout of CEPC VTX

Baseline design parameters
for CEPC VTX

	$R \ (\mathrm{mm})$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Physics driven requirementsRunning constraintsSensor specifications $\sigma_{s.p.} = \frac{2.8 \ \mu m}{Material budget} = \frac{0.15\% \ X_0 / layer}$ Small pixel~16 \ \mu m}{50 \ \mu m} ~16 µm Thinning to 50 µm r of Inner most layer ______ beam-related background _____ 50 mW/cm² low power ~1 µs fast readout radiation tolerance \leq 3.4 Mrad/ year $\leq 6.2 \times 10^{12} n_{ec} / (cm^2 year)$

Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector

-----> radiation damage----->

Main specifications of the full-scale chip

Bunch spacing

- Higgs: 680 ns; W: 210 ns; Z: 25 ns
- > Max. bunch rate: 40 M/s

Hit density

- 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z
- Cluster size: ~3 pixels/hit
 - > Epi-layer thickness: ~18 µm
 - > Pixel size: $25 \mu m \times 25 \mu m$

Ref: CEPC Conceptual Design Report, Volume II

For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row × 1024 col
TID	>1 Mrad	Data rate	3.84 Gbps triggerless ~110 Mbps trigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns for 98% efficiency	Chip size	~1.4 × 2.56 cm ²

CEP

TaichuPix sensor architecture

Pixel 25 µm × 25 µm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- > Time stamp added at end of column (EOC)
- > Readout time: 50 ns for each pixel

2-level FIFO scheme

- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

> On-chip bias generation, LDO, slow control, etc.

TaichuPix prototypes overview

- Motivation: a large-scale & full functionality pixel sensor for the first 6-layer vertex detector prototype
- Major challenges for design
 - > Small pixel size \rightarrow high resolution (3-5 μ m)
 - > High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole
 - Radiation tolerance (per year): 1 Mrad TID

Completed 3 round of sensor prototyping in a 180 nm CMOS process

- > Two MPW chips (5 mm \times 5 mm)
 - TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification
- > 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023

Functionality of complete signal chain

Functionality of the complete signal chain (including sensor, analog front-end, in-pixel logic readout, matrix periphery readout and data transmission unit) was firstly proved with X-ray, electron and laser sources.

Measured results consistent with simulations in term of shape, amplitude

Pixel analog signals from simulation (left) and measurement (right)

Pixel analog front-end

Based on ALPIDE* front-end scheme

- > modified for faster response
- 'FASTOR' signal delivered to the EOC (end of column) when a pixel fired, timestamps of hit recorded at pos. edge of 'FASTOR'

Schematic of pixel front-end

*Ref: D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042

Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp of a step of 25 ns.

TaichuPix-2 test with ⁹⁰Sr

Four pixel sectors with different analog front-end variations for design optimization, S1 used in the full-scale chip due to the lowest ENC

Sectors Front-end design features

S1	Reference design, inherited from TaichuPix-1
S2	PMOS in independent N-wells
S3	One transistor in an enclosed layout
S4	Increased transistor size to reduce the threshold dispersion

Threshold and noise of different pixel sectors

Threshold Threshol Temporal Total equiv. Secnoise (e⁻) tors Mean (e⁻) d rms (e⁻) noise (e⁻) **S1** 267.0 49.8 29.3 57.8 S2 293.4 26.9 60.8 54.5 **S**3 384.9 58.4 24.4 63.3 S4 411.9 56.6 26.5 62.5

TC2 exposure to ⁹⁰Sr source

- Average cluster size decreases with threshold as expected
- Average cluster size for S1-S4 larger than 1,

→ benefits the spatial resolution (better than the binary resolution, $25/\sqrt{12} \approx 7.2 \,\mu m$)

Large-scale sensor TaichuPix-3

- 12 TaichuPix-3 wafers produced from two rounds
 - > Wafers thinned down to 150 µm and diced

8-inch wafer

Wafer after thinning and dicing

Thickness after thinning

> Wafers tested on probe-station \rightarrow chip selecting & yield evaluation

Probe card for wafer test

An example of wafer test result

Threshold and noise of TaichuPix-3

- Pixel threshold and noise were measured with selected pixels
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻ @ nominal bias setting

TaichuPix-3 telescope

The 6-layer of TaichuPix-3 telescope built

Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board 15.9 mm

6-layer TaichuPix-3 telescope

Setup in the DESY testbeam

- > TaichuPix-3 telescope in the middle
- Beam energy: 4 GeV mainly used
- Tests performed for different DUT (Detector Under Test)

4.78 µm

Detector efficiency

Decreases with increasing the threshold, detection efficiency >99.5% at threshold with best resolution

X-direction

- Fit

 $= 4.78 \pm 0.01 (stat.) \mu$

Spatial Resolution

~4.78 µm

×10

Events

60

50

40

30

20

10

Distribution of residual X

Spatial resolution

- Gets better when decrease the pixel threshold, due to the increased cluster size
- A resolution $< 5 \mu m$ achieved, best resolution is \geq

TaichuPix-3 beam test result

Ladder readout design

- Detector module (ladder) = 10 sensors + readout board + support structure + control board
 - > Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support
 - > Signal, clock, control, power, ground will be handled by control board through flexible PCB

Challenges

- > Long flex cable \rightarrow hard to assemble & some issue with power distribution and delay
- > Limited space for power and ground placement \rightarrow bad isolation between signals

Solutions

Read out from both ends, readout system composes of three parts, careful design on power placement and low noise

^{7/9/2023,} TaichuPix chips for CEPC VTX, TIPP2023

Laser test result of ladder

Laser tests on 5 Taichupix chip on a full ladder ("CEPCV" pattern by scanning laser on different chips on ladder)

A full ladder includes two identical fundamental readout units

> Each contains 5 TaichuPix chips, a interposer board, a FPGA readout board

Functionality of a full ladder fundamental readout unit was verified

- > Configuring 5 chips in the same unit
- Scanning a laser spot on the different chips with a step of 50 µm, clear and correct letter imaging observed
- > Demonstrating 5 chips working together \rightarrow one ladder readout unit working

Summary

- The full-scale and high granularity pixel prototype, TaichuPix-3, has been designed and tested for CEPC VTX R&D
 - > Spatial resolution of 4.78/4.85 µm measured with 4 GeV electron beam in DESY
 - > Total ionization dose (TID) > 3 Mrad
- Readout electronics for the sensor test and the ladder readout were developed
 - > Performed the sensor characterization in the lab successfully
 - Completed beam tests for the pixel sensor prototype and the vertex detector mechanical prototype

Concept (2016)

Vertex detector prototype (2023)

Thank you very much for your attention !