Expected Performance of Cosmic Muon Veto Detector at IICHEP, Madurai, India. Contribution ID: 167

Raj Shah^{1,2} and Prof. Gobinda Majumder ²

 $^{1}\mathrm{Homi}$ Bhabha National Institute, Mumbai, India $^{2}\mathrm{Tata}$ Institute of Fundamental Research, Mumbai, India

September 4, 2023

Table of Contents

- Motivation
- Detector Description & implementation in GEANT4 toolkit
- 3 Signal Digitization
 - Charge Measurement
 - Timing Measurement
- 4 Clustering Algorithm
- 5 mini-ICAL track Reconstruction/Extrapolation
- 6 Extrapolation Results
- Effective Size of Detector
- 8 Expected Veto Efficiency

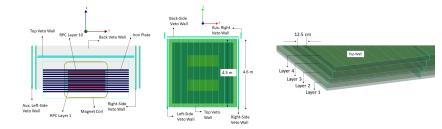
Onclusion

10 BackUp

Motivation

- The motivation of the Cosmic Muon Veto Detector (CMVD) is to explore the feasibility of building a large-scale neutrino experiment at shallow depths.
- Earlier investigations utilizing a compact experimental setup have yielded promising outcomes, achieving a cosmic muon veto efficiency of 99.98%.
- However, a much larger scale experiment is required to establish and improve this result.
- With an aim to achieve 99.99% veto efficiency, simultaneously maintaining the false-positive rate of less than 10⁻⁵, an extruded plastic scintillator-based cosmic muon veto is being built around the existing miniICAL detector at the transit campus of India based Neutrino Observatory, Madurai.

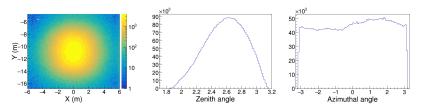
mini-ICAL detector


- Currently operational at IICHEP, Madurai, the miniICAL stands as an 85-ton prototype detector of the larger ICAL (Iron Calorimeter) experiment.
- The mini-ICAL consists of ten layers, each comprising two 2 m \times 2 m glass Resistive Plate Chambers (RPCs), sandwiched between 11 layers of 5.6 cm thick iron plates.
- The detector involves two coils comprised of copper conductors, capable of generating a maximum magnetic field strength of 1.5 T.
- A gas mixture of R134a, iso-butane, and SF₆ in a proportion of 95.2 %, 4.5 % and 0.3 % respectively are used to operate these RPCs in avalanche mode configuration.
- Using the orthogonal readout strips and the layer number, precise coordinates of particle trajectories can be determined.

Cosmic Muon Veto Detector

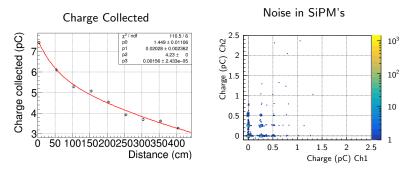
- Detector Design: Veto walls around 3 sides & top using Extruded Plastic Scintillator (EPS) strips
- Technical Details: EPS Strips: 4.5-4.7 m length, 5 cm width, 0.9/1.8 cm thickness
- Photon Capture: Two 1.4mm double-clad WLS fibers for efficient scintillation light collection
- Photon Detection: $2 \text{ mm} \times 2 \text{ mm}$ Hamamatsu SiPMs (model S13360-2050VE) with both-side detection.
- Integration: More than 700 EPS strips & \approx 3000 SiPMs.

Detector Geometry in GEANT4 toolkit



Veto	# of	Layer	# of	Strip	distance
Wall	Layers	staggering	Scintillator strips	dimensions	from miniICAL
Тор	4	$\frac{1}{4}$ width	88/Layer	4.5m imes 5cm imes 1 - $1.8cm$	52 cm
Side	3	$\frac{1}{3}$ width	40/Layer	$4.5 - 4.6\ m imes 5\ cm imes 1\ cm$	30 – 33 cm
Auxiliary	3	$\frac{1}{3}$ width	8/Layer	4.7 m \times 5 cm \times 1.8 cm	33 cm

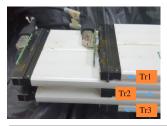
* Each Tiles has 8 EPS in the form of 4 Di-counters. Gap Between two EPS is ≈ 1 mm. Spacing Between two tiles is ≈ 2 mm. Extra Side Walls for filling dead spaces between the edges of side & back walls.

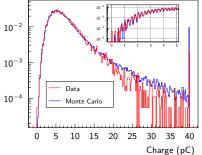

Event Generation

- The event generation process integrates CORSIKA and the detector geometry.
- Trigger acceptance is established by extrapolating particle positions from the topmost RPC layer (layer 10) to the layer below (layer 7).
- This approach defines the Mini-ICAL trigger efficiently, with event vertex calculation based on interpolated positions on the rooftop.
- Improved computational time by rejecting muon trajectories that do not intersect the top and bottom trigger layers.

Digitization

 Instrumental effects like energy loss along WLS fiber, noise in SiPM, threshold etc are added.

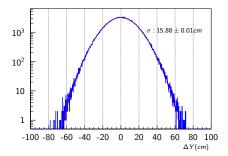



Relevant data ¹ obtained at 2.5 overvoltage are used in simulation.

¹M. Jangra et. al, "Characterization of Hamamatsu SiPM for Cosmic Muon Veto Detector at IICHEP," Springer Proc. Phys., vol. 277, pp. 815-819, 2022.

Digitization: Charge Measurement

- 1 Conversion of deposited energy into the number of photons (N_{pe}) , accounting for energy loss along the fiber, considering a proximity of 30 photons in the nearest SiPM.
- 2 Introduction of random fluctuations in N_{pe} .
- 3 Charge collected in the SiPM is computed with a 0.26 pC per photo-electron.
- 4 Incorporation of random noise and SiPM pedestal, followed by signal digitization using a 12-bit ADC.

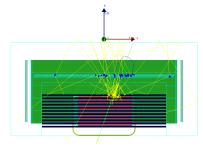


Digitization: Timing Measurement

- 1 Calculation of SiPM time based on a measured fiber velocity- 16.2 cm/ns.
- $2\,$ Accounting for measurement uncertainty at the SiPM, with a Gaussian width $\approx 3\,$ ns/ $\sqrt{N_{pe}}.$
- 3 SiPM time digitization using a 10-bit TDC.

Uncertainties in muon position from timing.

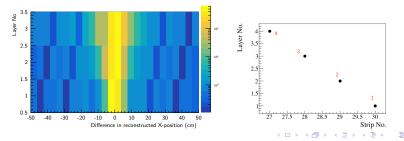
Hits and Cluster Formation


The CMV detector geometry detects a minimum of two valid layers of hit per reconstructed muon. Closely spaced strips can result in two hits in a layer. Multiple hits may arise from muon ionization and delta rays. Electromagnetic/hadronic interactions also contributes.

To meet efficiency requirement, hit is formed when two or more SiPMs have signal above certain threshold. Delta-ray/Noise hits are combine with muon hits to form clusters as is indistinguishable.

Layer Staggering.

Multiple hits due to secondary particles.

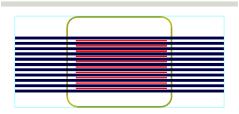

Cluster Formation (Continued)

Clusters in different layers are related if within 12 cm. Super-clusters require 2 valid clusters/hits in each wall.

Clusters combine to form doublets, then triplets if related. In the top wall, triplets and doublets combine to quartets:

Doublets: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. Triplets: 1-2-3, 1-2-4, 2-3-4. Quartets: 1-2-3-4.

Super-clusters are fitted with a straight-line to determine the expected muon position at the center of each wall.

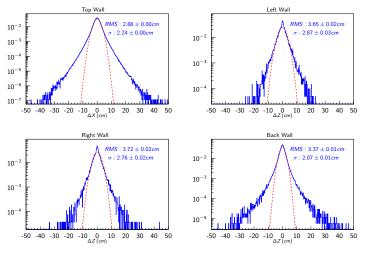


mini-ICAL track Reconstruction/Extrapolation

- Track Reconstruction: Track finding, Track fitting
- Track fitting:
 - Kalman filter-based algorithm in presence of magnetic field ²
 - Linear least-square method used without magnetic field ³.

• Track Extrapolation:

Inside topmost ironlayer: Prediction-Step of K-F algorithm. Outside non-magnetic region: Linear Extrapolation.

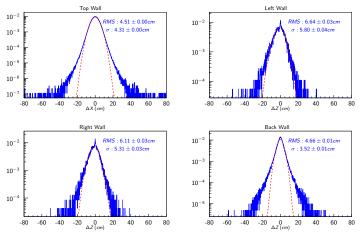

²K. Bhattacharya et al., "Error propagation of the track model and track fitting strategy for the Iron CALorimeter detector in India-based neutrino observatory," Comput. Phys. Commun., vol. 185, pp. 3259-3268, 2014, arXiv:1510.02792.

³S. Pal, Development of the INO-ICAL detector and its physics potential thesis: $\rightarrow 4$ $\equiv \rightarrow 2$

Extrapolation Results without Magnetic field

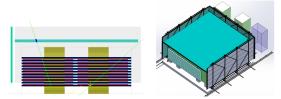
 $\# ~{\rm of}~{\rm layers} > 6~{\rm and}~\chi^2/\textit{ndf} < 2$

Difference between avg. super cluster position and extrapolated position.

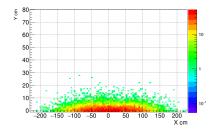

イロト イボト イヨト イヨト

э

Extrapolation Results with Magnetic field

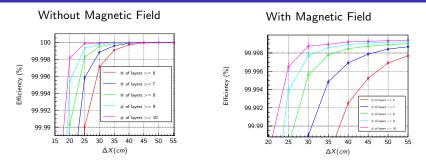

of layers > 6 and χ^2/ndf < 2

Difference between avg. super cluster position and extrapolated position.

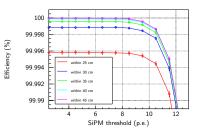


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Effective Area of the CMVD



mini-ICAL triggered by muon from front-side.

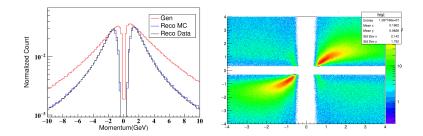


Extrapolated X-Y position on the topmost layer when there is a valid trigger in miniICAL and the muon is coming from the front side. Thus \approx 30 cm of 4.5 m from the front-side would be excluded in the data.

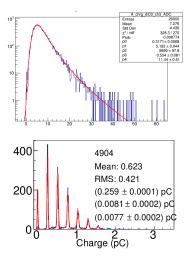
Expected Veto Efficiency

Variation of SiPM threshold

伺い イヨン イヨン ニヨ


Conclusion

To meet our stringent requirements:


- Firstly, exclude events 30 cm proximity to the front side of the detector.
- Secondly, look for extrapolated position of well-fitted tracks:
 - If extrapolated positions fall within the detector boundaries, consider superclusters within a 30 cm radius from this point.
 - For tracks with extrapolated points outside the detector boundaries, evaluate their distance from the detector's edges and assess their 2D distance from the associated supercluster.

Thank You for Attention !

BackUp: Momentum Distribution

BackUp: SiPM Charge Spectrum

