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Motivation

Motivation

@ The motivation of the Cosmic Muon Veto Detector (CMVD) is to explore
the feasibility of building a large-scale neutrino experiment at shallow
depths.

o Earlier investigations utilizing a compact experimental setup have yielded
promising outcomes, achieving a cosmic muon veto efficiency of 99.98 %.

@ However, a much larger scale experiment is required to establish and
improve this result.

@ With an aim to achieve 99.99% veto efficiency, simultaneously maintaining
the false-positive rate of less than 107°, an extruded plastic
scintillator-based cosmic muon veto is being built around the existing
minilCAL detector at the transit campus of India based Neutrino
Observatory, Madurai.
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Detector Description & implementation in GEANT4 toolkit

mini-ICAL detector

o Currently operational at IICHEP, Madurai, the minilCAL stands as an
85-ton prototype detector of the larger ICAL (Iron Calorimeter)
experiment.

@ The mini-ICAL consists of ten layers, each comprising two 2 m X 2 m
glass Resistive Plate Chambers (RPCs), sandwiched between 11 layers of
5.6 cm thick iron plates.

@ The detector involves two coils comprised of copper conductors, capable of
generating a maximum magnetic field strength of 1.5 T.

@ A gas mixture of R134a, iso-butane, and SFs in a proportion of 95.2 %,
4.5 % and 0.3 % respectively are used to operate these RPCs in avalanche
mode configuration.

@ Using the orthogonal readout strips and the layer number, precise
coordinates of particle trajectories can be determined.
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Detector Description & implementation in GEANT4 toolkit

Cosmic Muon Veto Detector

@ Detector Design: Veto walls around 3 sides & top using Extruded Plastic
Scintillator (EPS) strips

@ Technical Details: EPS Strips: 4.5-4.7 m length, 5cm width, 0.9/1.8cm
thickness

@ Photon Capture: Two 1.4mm double-clad WLS fibers for efficient scintillation
light collection

@ Photon Detection: 2mm x 2mm Hamamatsu SiPMs (model S13360-2050VE)
with both-side detection.

@ Integration: More than 700 EPS strips & ~3000 SiPMs.
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Detector Description & implementation in GEANT4 toolkit

Detector Geometry in GEANT4 toolkit
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Detector Description & implementation in GEANT4 toolkit

Event Generation

@ The event generation process integrates CORSIKA and the detector
geometry.

o Trigger acceptance is established by extrapolating particle positions from
the topmost RPC layer (layer 10) to the layer below (layer 7).

@ This approach defines the Mini-ICAL trigger efficiently, with event vertex
calculation based on interpolated positions on the rooftop.

@ Improved computational time by rejecting muon trajectories that do not
intersect the top and bottom trigger layers.
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Signal Digitization

Digitization

@ Instrumental effects like energy loss along WLS fiber, noise in SiPM,
threshold etc are added.

Charge Collected Noise in SiPM'’s
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Relevant data ! obtained at 2.5 overvoltage are used in simulation.

IM. Jangra et. al, " Characterization of Hamamatsu SiPM for Cosmic Muon Veto Detector at
IICHEP,” Springer Proc. Phys., vol. 277, pp. 815-819, 2022.
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Signal Digitization

Digitization: Charge Measurement

1 Conversion of deposited energy
into the number of photons (Npe),
accounting for energy loss along
the fiber, considering a proximity
of 30 photons in the nearest SiPM.

2 Introduction of random
fluctuations in Npe. 10-2

3 Charge collected in the SiPM is
computed with a 0.26 pC per

107 ¢

photo-electron. F

4 Incorporation of random noise and Wl
SiPM pedestal, followed by signal 10 —— Monte Carlo

digitization using a 12-bit ADC.
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Signal Digitization

Digitization: Timing Measurement

1 Calculation of SiPM time based on a measured fiber velocity- 16.2 cm/ns.

2 Accounting for measurement uncertainty at the SiPM, with a Gaussian

width =~ 3 ns/+/Npe.

3 SiPM time digitization using a 10-bit TDC.

Uncertainties in muon position from timing.
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Clustering Algorithm

Hits and Cluster Formation

The CMV detector geometry
detects a minimum of two valid
layers of hit per reconstructed
muon. Closely spaced strips
can result in two hits in a layer.
Multiple hits may arise from
muon ionization and delta rays.
Electromagnetic/hadronic
interactions also contributes.

Layer Staggering.

Multiple hits due to secondary particles.

To meet efficiency requirement,
hit is formed when two or more
SiPMs have signal above
certain threshold.
Delta-ray/Noise hits are
combine with muon hits to
form clusters as is
indistinguishable.
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Clustering Algorithm

Cluster Formation (Continued)

Clusters in different layers are related if within 12 cm. Super-clusters require 2
valid clusters/hits in each wall.

Clusters combine to form doublets, then triplets if related. In the top wall,
triplets and doublets combine to quartets:

Doublets: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4.

Triplets: 1-2-3, 1-2-4, 2-3-4.

Quartets: 1-2-3-4.

Super-clusters are fitted with a straight-line to determine the expected muon
position at the center of each wall.
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mini-ICAL track Reconstruction/Extra

mini-ICAL track Reconstruction/Extrapolation

e Track Reconstruction: Track finding, Track fitting

o Track fitting:
o Kalman filter-based algorithm in presence of magnetic field 2
o Linear least-square method used without magnetic field 3.
e Track Extrapolation:
Inside topmost ironlayer: Prediction-Step of K-F algorithm.
Outside non-magnetic region: Linear Extrapolation.

|

R

2K, Bhattacharya et al., " Error propagation of the track model and track fitting strategy for the
Iron CALorimeter detector in India-based neutrino observatory,” Comput. Phys. Commun., vol.
185, pp. 3259-3268, 2014, arXiv:1510.02792.
3S. Pal, Development of the INO-ICAL detector and its physics potentialy thesis.
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# of layers > 6 and x?/ndf < 2
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Extrapolation Results with Magnetic field

# of layers > 6 and x?/ndf < 2

Difference between avg. super cluster position and extrapolated position.
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Effective Area of the CMVD
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mini-ICAL triggered by muon from front-side.
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Expected Veto Efficiency

Without Magnetic Field With Magnetic Field
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Conclusion

To meet our stringent requirements:
@ Firstly, exclude events 30 cm proximity to the front side of the detector.
@ Secondly, look for extrapolated position of well-fitted tracks:
o If extrapolated positions fall within the detector boundaries, consider
superclusters within a 30 cm radius from this point.
o For tracks with extrapolated points outside the detector boundaries,

evaluate their distance from the detector’'s edges and assess their 2D
distance from the associated supercluster.

Thank You for Attention !
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BackUp: Momentum Distribution
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BackUp: SiPM Charge Spectrum
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