

The Upgrade of the CMS Level-1 Muon Trigger for the HL-LHC

Landscape

The High Luminosity LHC (HL-LHC)

- The CMS HL-LHC upgrade
 - Tracking at Level-1
 - The Muon Detector System upgrade
- The CMS Level-1 Trigger Upgrade
 - Motivation / Concept / Key features

The L1 Muon Trigger upgrade

- Concept and implementation
 - Architecture
 - ◆ Electronics
 - Algorithms and firmware
 - What comes next

Caveats

- Lots of material to cover, here just a flavor of what is
- Work in progress, so all preliminary of course

Outline

https://cds.cern.ch/record/2714892

~350 pages / ~ 3yrs in the making / ~ 3yrs since

An ambitious project for an ambitious physics program

- 14 TeV p-p collisions
 - ◆ total integrated luminosity of ~3000-4000 fb⁻¹
 - ◆instantaneous ~5-7x10³⁴ cm⁻²s⁻¹
 - ◆ ~200 simultaneous collisions (pileup)
- An enormous challenge
 - Accelerator
 - Detectors
 - Trigger and data acquisition
 - Computing
 - Data Analysis

HL-LHC "pileup" challenge

The HL-LHC

З

Section, Cross

An ambitious project for an ambitious physics program

- 14 TeV p-p collisions
 - total integrated luminosity of ~3000-4000 fb⁻¹
 - ◆instantaneous ~5-7x10³⁴ cm⁻²s⁻¹
 - ◆ ~200 simultaneous collisions (pileup)
- An enormous challenge
 - Accelerator
 - Detectors
 - Trigger and data acquisition
 - Computing
 - Data Analysis

~ x10 more data @ HL-LHC

J. Konigsverg @ 1144 2023

The HL-I HC

More data:

Rarer processes More precision Discovery potential

- Run 1 [2011-12]: 5/20 fb-1 @ 7/8 TeV
- Run 2 [2015-2018]: ~ 140 fb-1 @ 13 TeV
- Run 3 [2022-2025]: <u>started</u>, ~ 300 fb-1 @ 13.6 TeV

Major upgrade of every system !

- + New systems added...
 - New trackers
 - Tracking at Level-1
 - New and upgraded calorimeters
 - New timing layers
 - New and upgraded muon systems
 - New trigger systems
 - Level-1
 - High Level Trigger
 - Luminosity detectors

CMS a
 L1T and HLT/DAQ Tracker Tracks in L1 L1T acceptance: 100 HLT output at 7.5 kF 40 MHz Scouting: R L1T latency: 4 → 12
 <u>Calorimeter Endcap</u> High Granularity Cal 3D showers and prec Si, Scint+SiPM in Pb
 <u>Tracker</u> Si-Strip and P Design for tra Extended cover

The CMS HL-LHC upgrade

See Anne Dabrowski's presentation on Tuesday

Phase II Outer Tracker

- replacement of entire outer tracker
- 13 200 modules, 190 m² silicon, 213 M channel (legacy: 10 M channel)
- 6 barrel layer plus 2×5 endcaps discs

- two kinds of $p_{\rm T}$ -modules:
 - strip-strip (2S): 5 cm×90 μm
 - pixel-strip (PS): $1.6 \text{ mm}/2.5 \text{ cm} \times 100 \mu \text{m}$

p_T>n GeV tunable window

- new modules allowing rough $p_{\rm T}$ estimate
- cut at 2 GeV reduces data rate by \sim one order of magnitude
- $p_{\rm T}$ -information is useful during track reconstruction

Tracking at Level-1

Tilted TBPS: precision assembly of Layer 3 ring

CMS L1 track trigger algorithm

- track finding through road search based on tracklet seeds
- multiple seeding layer combinations used for redundancy and high efficiency
- found tracks sharing stubs get merged (duplicate removal)
- track fit uses kalman filter
- BDT provides qualifiers for improved fake reduction

Use p_T>2 GeV hits for track finding

Kalman filter for track fitting

- o-stage processing architecture for Track Finding : Layer 1 (DTC), Layer 2 (TF) Τw
- Outer Tracker divided into 9ϕ sectors
 - Track Finding also segmented into 9ϕ sectors, with time-multiplexing period of 18 Ο

• Output to L1 trigger

- Each track finder board outputs tracks over 6 pairs of links ($\eta \ge 0$ vs $\eta < 0$)
 - 3 pairs to Correlator Trigger (layer-1), 2 pairs to GTT, 1 pair to GMT, operating at 25 Gb/s
 - Identical data content on each link pair

Tracking at Level-1

link to TF-L1 specification Tracks are described by a <u>96-bit track word</u> Up to two tracks every 3 link frames (64b) ▶ Up to 104 tracks per sector/half-η/event Track word Bits Field CMS Phase-2 Simulation 14 TeV, 200 PU Other MVAs 0-5₩10⁻ MVA quality 6-8 of hit pattern 9-15 Lact 16-18 bend χ^2 /d.o.f. 19-31 d_0 32-35 $\chi^2(r-z)/d.o.f.$ 10-3 36-47 z_0 $tan(\lambda)$ 48-63 $\chi^2(r-\phi)/d.o.f.$ 64-67 10-4 68-79 ϕ_0 80-94 1/R isValid 95 20 40 60 80 100 Max number of transmitted tracks per ϕ sector

Latency of about 5µsec, O(1k) tracks @ 25 Gbps

Motivation

- More modern, faster, electronics
- Added redundancy & robustness, for higher collision rates at larger rapidities

Barrel region

- Drift Tubes (DT) and Resistive Plate Chambers (RPC)
 - No new detectors
 - Upgrade of Front End/Back End electronics and readout
- Overlap and Endcap Region
 - Electronics upgrade of several existing systems
 - Cathode Strip Chambers (CSC) & RPC
 - Build additional detectors @ the larger rapidities
 - Improved RPCs (iRPC)
 - New Gas Electron Multiplier detectors
 - GEM
 - ME0

Muon Detector System upgrade

The approximate boundaries between three muon sub-triggers are indicated.

GE1/1 (Installed in LS2)

- ✓ 36 superchambers (SC) per endcap
- ✓ 2 triple GEM detectors per SC (Gas gap: 3/1/2/1 mm)
- 🖌 10° in φ
- $\checkmark 1.5 < \eta < 2.0$

GE2/1 (installation before LS3)

- ✓ 18 superchambers (SC) per endcap
- ✓ 2 triple GEM detectors per (SC)
- 🖌 20° in φ
- \checkmark 1.6 < η < 2.4

ME0 (installation during LS3)

- 18 stacks per endcap \checkmark
- 20° in φ \checkmark
- $2.0 < \eta < 2.8$ \checkmark

RE3/1, RE4/1 (installation before LS3)

- 72 new iRPC chambers
- 20° in φ
- ✓ 1.8 < η < 2.5

Muon Detector System upgrade

6 layers of triple GEM detectors per stack

Installation of GE1/1 muon station in 2020

GE1/1 taking data in Run 3

RE4/1 demonstrator installed

GE2/1 demonstrator

ME0 chambers

DT electronics slice test

For HL-LHC CMS will keep its two-tier trigger concept

> Level-1 (hardware based) Trigger

- o Extensive use of state-of-the-art FPGAs
- o Increase bandwidth: 100 kHz \Rightarrow 750 kHz
- o Increase Latency: 3.8 $\mu s \Rightarrow 12.5 \mu s$
- o Higher granularity (calorimeters & muon systems) and tracking information
- Sophisticated object reconstruction and correlation
- Enhanced physics selection & Scouting system

> High Level (software) Trigger

- increasing efficiency and stay within computing resources.
- o Reduction rate (100:1) 1 kHz \Rightarrow 7.5 kHz
- o Data throughput: 2.5 Gb/s \Rightarrow 61 Gb/s
- Heterogenous architecture CPU/GPU

The CMS Trigger upgrade

o Optimize reconstruction: Improve physics reach, maintain thresholds while

General Features:

- Maintain and expand on current physics capabilities in high-PU environment
- Utilize all information from upgraded detectors
 - Independent Calorimeter/Muon/Tracker paths
 - Correlator system for particle flow and mixed-object triggers
 - Global Trigger for trigger menu implementation
 - Data Scouting at 40 MHz: physics with L1 info only

The Level-1 Trigger upgrade

ATCA digital processors w/Xilinx VU13P-2 A2577 FPGA running @ 25 Gbps

Quite a jump in complexity

J. Konigsberg @ TIPP 2023

The Level-1 Trigger upgrade

HL-LHC L1 Trigger

Big jump in complexity here as well

The Muon Trigger upgrade

Let's deconstruct this some

At the core there are 3 systems [the focus here]

- EMTF/OMTF = Endcap/Overlap muon track finders (~2µ sec)
 - Reconstruct standalone muons from µ systems in the corresponding region
 - Prompt and displaced [new] for long lived particles
 - Output to GMT [including all muon stubs] and standalone µ directly to the Correlator and the Global Trigger

GMT = Global Muon Trigger (~2µs)

- Operates at 18 time multiplexing factor
- Reconstructs standalone barrel muons
 - Prompt and displaced
- Matches tracker tracks with muons and muon stubs from all muon systems
- Runs topological algorithms e.g.:
 - Track-isolated muons
 - Tau=>3µ BSM decays
 - ...

Outputs these objects to the Correlator and Global Trigger

Muon Trigger architecture

We have defined the data structure/payload for all these

Muon Trigger interfaces

EMTF ==> GMT interface data structure

[Range	Field	Bits	Format	Notes
	Standal	one Muor	ns [64 k	pits]	I
	12–0	p_{T}	13	unsigned int, LSB 31.25 MeV	saturates at 256 GeV
	25–13	ϕ	13	signed int, LSB $2\pi/2^{13}$	at PCA to beamline
	38–26	η	13	signed int, LSB $2\pi/2^{13}$	at PCA to beamline
	43–39	z_0	5	signed int, LSB 1.875 cm	range ± 30 cm
	50-44	d_0	7	signed int, LSB 3.85 cm	range ± 246.4 cm
	54–51	quality	4	tbd	zero if null muon
	55	charge	1	0 = positive, 1 = negative	
	59–56	β	4	unsigned int, LSB 6%	linear in 0-1 range
	63–60	spare	4		
	5 hybrid	d stubs as	sociate	ed with this muon [64 bits]	
	3–0	quality	4	tbd	zero if null muon
	6–4	BX	3		bunch crossing
	19-7	ϕ_1	13	signed int, LSB $2\pi/2^{13}$	global coordinate
	32-20	ϕ_2	13	signed int, LSB $2\pi/2^{13}$	global coordinate
	44-33	η_1	12	signed int, LSB $2\pi/2^{12}$	global coordinate
	56-45	η_2	12	signed int, LSB $2\pi/2^{12}$	global coordinate
	61–57	time	5	signed int, LSB 25/32ns	
	63–62	spare	2		

		4
		۰.

•	Sen 0 0 0	d to GMT a fixed number of SA μ's 64 bit info for prompt muons (up to 4/sector) 64 bit info for displaced muons (up to 4/sector) SA info contains p _τ , eta, phi, z0, d0, beta With each SA muon include up to 5 of its hybrid stubs [64 bits each] Deserialize, sort, and prioritize at the GMT
•	Sen °	d to GMT up to 32 loose hybrid stubs right behind the SA muon information 64 bit info for each [=> will add geometrical address]
•	Pay °	Oad [estimate in backup] 1 link per TF board to each GMT board @50% occupancy Each GMT board gets 12(EMTF)+6(OMTF) = 18 input links

Muon Trigger interfaces examples

GMT will send 12 track-matched muons, sorted by pT. Isolation and beta included ("TrackerMuons") Each track-matched muon involves 96 bits.

Range	Field	Bits	Format	Notes
Four-ve	ector frame	[64 bit	s]	
0	valid	1	0 = null object, 1 = valid object	
16–1	p_T	16	linear, $LSB = 31.25 \text{ MeV}$	Saturates at 256 GeV
29–17	ϕ	13	two's complement, LSB = $2\pi/(2^{13})$	
43–30	η	14	two's complement, LSB = $2\pi/(2^{13})$	
53-44	z_0	10	two's complement, LSB = 0.05859 cm on ± 30 cm	Same as track trigger
63–54	d_0	10	two's complement, LSB = 0.03 cm on ± 15.4 cm	Reduced to 10 bits
Next fra	ame [32 bits]		
0	q	1	0 = positive, 1 = negative	
8–1	Q	8		Track-match related
12–9	Isolation	4	undefined, ignore for now	3 thresholds for absolute,
				3 thresholds for relative
16–13	β	4	16 bins, LSB = 6%	Linear increments in [0,1]
31–17	spare	15		Reserved
				A

EMTF/OMTF/GMT Hardware

- Unified home-made ATCA platform ("X2O")
- Modular design w/ three separate (halogen-free) modules
 - Power/Control/Monitoring module
 - AMD/Xilinx Kria Zyng FPGA
 - Optical Module
 - QSFP optics 30 cages 120 Rx + 120 Tx links @25Gbps
 - Processing module
 - With Xilinx VU13P-2 FPGA, running all µ algorithms
 - 3.7M LogicCells, 1.7M LUTs, 94Mb BRAM, 12k DSP
- System size
 - EMTF/OMTF/GMT = 12/6/18 boards, 36 in total

Status

- Versions of each module are at, or very close to, final production **SPECS**
- Extensive tests performed on single boards
 - Signal integrity
 - Temperature
 - Optics BER

Muon Trigger hardware

X2O ATCA modular blade

X2O QSFP signal integrity (electrical)

All positions tested with latest optical module and QSFP

X2O thermal performance

- FPGA temperature of 85C with 200W at fan level 10/15
- QSFP temperature < 50C with 40% airflow on all cages
- Three board side-by-side test with all optics on shows optics T< 50C with 25C input air and airflow at 40%
 - QSFP optics specified up to 70C

J. Konigsberg @ TIPP 2023

Muon trigger board tests

X2O QSFP optical performance

- New results with proper precision attenuator for 120 optical channels
- BER measured as a function of average optical power for different attenuation
- No errors for attenuation levels of 8 dB or more for all channels.
- Lower TX power higher RX sensitivity \rightarrow ~7.5 dBm margin

All looks very good.

Standalone Barrel Muons: BMTF

- Runs on the GMT board
- Uses DT and RPC hits
- Outside in Kalman Filter track building
- Allows for displaced muons [not beam constrained]

Muon Trigger algorithms in a nutshell

Standalone Overlap Muons: OMTF

- Naive Bayes Classifier
- Uses pre-determined p_T binned hit patterns from DT/RPC/CSC
- Probabilistic comparison of actual hits selects best muon track

Muon Trigger algorithms in a nutshell

Efficiency vs pT

Rate vs pT

~10kHz @ 20 GeV threshold [target for these track finders]

[+ageing simulation]

Standalone Overlap Muons: EMTF

Muon Trigger algorithms in a nutshell

- Fiducial pattern segmentation {eta, $1/p_T$ } of the detector layer consistent with µ trajectories
- Jses CSC/GEM/RPC/iROC/ME0 hits
- A pattern fires if enough hits on it
- Hit information {eta, phi, phi-bend, time, quality} is input to a Neural Network to assign p_T and displacement
- Patterns can also be tailored for displaced us

Patterns for one eta region: layers (y axis), 1/p_T squares

	ME1/1	ME1/2	ME2	ME3	ME4	RE1	RE2	RE3	RE4	GE1/1	GE2/1	ME0	
ф	•			1	1	-		1			<		
θ	1	1	1	1	1	1	1	1	1	1	 Image: A second s	1	
bend	1	1	1	1	1							1	
quality	1	1	1	1	1							1	n n
time													

GMT Tracker Track matching

- Everything in one box!
 - Input all Level-1 tracks from outer tracker TMUX=18
 - Input all reconstructed muons, and muon stubs, from all muon detectors
- Propagate tracks to match muons/stubs in eta/ p_T windows at different muon detector stations
 - Magnetic field / multiple scattering / detector resolutions
- Create track-matched muons with different qualities
 - Many choices on this
 - Can fill in the gaps from muon track finders
- Use the pT of the tracker track instead of muon
 - Much better resolution, sharp turn on, reduced rates

Efficiency vs pT

Track matching sharpens the turn-on

Muon trigger algorithms in a nutshell

GMT topological algorithms

- Exploit that info from all μ detectors in one place
- Exploit that all tracker tracks available as well Allp,
- Can see if a muon is isolated from tracks
 - Relative or absolute isolation @ different pt thresholds
- Can gather several muons into a single object such as a BSM tau=>3µ decay
 - Find suitable triplets, reconstruct invariant mass

Muon trigger algorithms in a nutshell

Advanced firmware development on all fronts

A corresponding software emulator to compare with

All development on VU13P FPGA

Split tasks by SLR (Super Logic regions). Total ~400 ns latency !

Muon Trigger firmware overview

Endcap region firmware

								
Site Type	SLR0	SLR1	SLR2	SLR3	SLR0 %	SLR1 %	SLR2 %	SLR
CLB	0	0	22873	16188	0.00	0.00	42.36	29
CLBL	0	0	11871	8677	0.00	0.00	40.54	29
CLBM	0	0	11002	7511	0.00	0.00	44.51	30
CLB LUTS	0	0	117166	82652	0.00	0.00	27.12	19
LUT as Logic	0	0	107691	81048	0.00	0.00	24.93	18
LUT as Memory	0	0	9475	1604	0.00	0.00	4.79	e
LUT as Distributed RAM	0	0	1261	0	0.00	0.00	0.64	G
LUT as Shift Register	0	0	8214	1604	0.00	0.00	4.15	6
CLB Registers	0	0	90825	89984	0.00	0.00	10.51	10
CARRY8	0	0	10755	0	0.00	0.00	19.92	(
F7 Muxes	0	0	328	12592	0.00	0.00	0.15	5
F8 Muxes	0	0	33	5950	0.00	0.04	0.03	5
F9 Muxes	0	0	0	0	0.00	0.00	0.00	G
Block RAM Tile	0	0	316	0	0.00	0.00	47.02	(
RAMB36/FIFO	0	0	299	0	0.00	0.00	44.49	(
RAMB18	0	0	34	0	0.00	0.00	2.53	0
URAM	0	0	0	0	0.00	0.00	0.00	(
DSPs	0	<u>0</u>	1454	0	0.00	0.00	47.33	6
Unique Control Sets	0	0	605	1005	0.00	0.00	0.56	(
	+	+	+	+	+		+	

Resource usage is less than 25% of chip

Less than 12% of LUTs, DSPs, and BRAM
Missing: Hybrid Stub Logic and Algorithm wrapper

Main algorithm is split across 2 SLRs, both less than 50% full

SLR3 - Pattern matching and sorting roads
SLR2 - Primitive Conversion, Track Building, and NNs

Also moving towards a Neural Network, as Endocarp

J. Konigsberg @ TIPP 2023

Muon Trigger firmware overview

Overlap region firmware

Resources

Module	LUT	LUTRAM	FF	BRAM	DSP
ural network	164690 (<mark>9.53%</mark>)	47 (< <mark>0.01%</mark>)	19015 (<mark>0.55%</mark>)	0 (<mark>0%</mark>)	441 (3.59
OMTF	184718 (10.69%)	18127 (<mark>2.29%</mark>)	108223 (<mark>3.13%</mark>)	252 (<mark>9.38%</mark>)	0 (<mark>0%</mark>)
MTF+NN	349408 (20.22%)	18174 (<mark>2.30%</mark>)	127238 (<mark>3.68%</mark>)	252 (<mark>9.38%</mark>)	441 (3.59

• % of usage w.r.t XCVU13P-FSGA-2577

Timing

Module	CLK	LATENCY	ii
Neural network	160 MHz	16 cycles	1
OMTF+NN	160 MHz	45 cycles	1

Modest resource usage and small latency of ~280 ns

- Different SLRs for different tasks
- Also fitting well on the FPGA

Global Muon Trigger "GMT"

Muon Trigger firmware overview

Global Muon Trigger firmware

Integration slice tests in preparation

- At CERN b904
- Board-to-board integration
- With other trigger systems

CMS has developed an advanced Muon Trigger @L1 for the HL-LHC era

- Will preserve/expand the CMS physics program
- Fast, modular, flexible
- Much progress towards implementation
 - Algorithms, emulators, firmware, hardware
 - No show stoppers foreseen
- Integration slice tests picking up
- Expect to produce all boards next year
- Installation of the final system...to follow
- Then commission, take data and... discover something !

Summarv

nnels	
I→ZZ, V	
l →ττ •bb	
γγ bb b	
vsics	
s	
s	
s 'EWK)	
s EWK) pectra)	

Backup etc

J. Konigsberg @ TIPP 2023

08/02/2023

L1 Data Scouting: overview

- What: acquire & analyze the L1 information for all events (40 MHz)
- Why: look for physics signatures identifiable with just L1 information but that would evade the L1 \rightarrow HLT \rightarrow Offline chain, e.g.:
 - Too large "irreducible" backgrounds, e.g. narrow resonances of unknow mass, as already done using HLT scouting for muons & hadronic resonances.
 - Signal identification requires an algorithm that can't fit the L1 fixed latency and resource budget, e.g. has too complex combinatorics on some events.
 - Signal from time-correlation across several BXs, e.g. slow or long-lived BSM.
- How: FPGA-equipped boards that receive L1 data via optical links and transfer it to PCs and the software world via TCP/IP or PCIexpress
- When: HL-LHC, but is being demonstrated already in 2018 (muons), Run 3 (muons + calo) limited by L1 reconstruction quality

