Drift Chamber with Cluster Counting Techniques for CEPC

Shuaiyi Liu

For the DC-PID group of CEPC 4th conceptual detector

Technology in Instrument and Particle Physics Conference (South Africa), 4-8 September 2023, Cape Town International Convention Centre 2023/9/7

Content

- Introduction
- Simulation study
 - Waveform Simulation
 - Reconstruction
- Activities on prototype test
 - Radioactive source test
 - Beam test
- Summary

CEPC(Circular Electron Positron Collider)

- CEPC (Circular Electron Positron Collider) is a double ring collider with two interaction points
- 100 km circumference
- 240 GeV Higgs factory
- 91.2 GeV Z factory
- 160 GeV WW threshold scan

Drift Chamber in CEPC 4th conceptual detector

Preliminary design

Preliminary DC parameters				
Inner radius	800mm			
Outer radius	1800mm			
Cell size	18 mm 🗙 18 mm			
Gas mixture	He/iC ₄ H ₁₀ =90:10			
Length of outermost wires ($\cos\theta=0.82$)	5143mm			

<u>Advantages</u>

- Particle identification
 - Reduce combination background
 - Improve mass resolution
 - Improve jet energy resolution
 - Benefit flavor tagging
- Tracking
 - Benefited momentum resolution in low momentum

6

PID by ionization measurement

- Gas atoms interact with the particle \rightarrow electron-ion pairs
- Electrons collected by anode wires
- Waveform versus time can be reconstructed from the data got from the front-end electronics.

dE/dx measurement

- Energy loss(dE/dx) can be calculated by applying integration to the waveform.
- Electrons with higher energy lead to secondary ionization, which makes dE/dx distribution more approximately as a Landau distribution.

8

dN/dx measurement

- To eliminate the effects of secondary ionization, a new method called dN/dx based on peak finding and clusterization is proposed
- The number of clusters in dN/dx method corresponds to the number of the primary ionization
- The distribution of the dN/dx is more approximately as a Poisson distribution.

dN/dx

- Number of primary ionization clusters per unit length
- Poisson distribution
- Small fluctuation

2023/9/7

dE/dx

- Energy loss per unit length
- Landau distribution
- Large fluctuation

K/π separation power dN/dx vs dE/dx

dN/dx has a much better K/π separation power up to 20 GeV/c compared to dE/dx(Simulation)

Simulation Study

- Classical Method
- Machine Learning Method

Waveform simulation

2023/9/7

12

Reconstruction algorithms

- Two methods under study
 - Classical method (developed)
 - Derivative-based peak finding + clusterization with peak merge
 - Deep learning based algorithm (ongoing)
 - Peak finding with LSTM + clusterization with DGCNN

Two-step reconstruction algorithm

Classical method

Peak finding

- With 1st and 2nd order derivatives
- Peak detection by the slope change of the rising edge

Clusterization

- If $\Delta t < t_{cut}$, peak merged
- The t_{cut} is related to diffusion and estimated from MC

- Advantages: Simple and fast
- Disadvantages: Lose efficiency for highly pile-up and noisy waveforms
- Developed and used in performance study

Preliminary results with classical algorithm

Preliminary results with classical algorithm

 K/π separation power vs $cos\theta$ (P=20GeV/c)

2023/9/7

17

Deep learning based algorithm

- RNN-based architecture: LSTM
- Binary classification of signals and noises on slide windows of peak candidates

Clusterization with DGCNN (Dynamic Graphic Convolutional Neural Network)

- GNN-based architecture: DGCNN
- Massage passing through neighbor nodes ⇔ Clusterization of electron timings from the same primary cluster
- Binary classification of primary and secondary electrons

Comparison between LSTM and derivative model

Better AUC for LSTM, due to the better pile-up recovery ability of the LSTM model

2023/9/7

Performance with deep learning based algorithm

MC truth 16.53 3.93 Classical algorithms 10.67 4.60	
	23.8%
Classical algorithm 18.67 4.60	24.6%
Deep learning 16.65 4.06	24.4%

to MC truth stribution

2023/9/7

Prototype test

- Radioactive source test
- Beam test

Prototype test with Sr90 source

- A prototype test with drift tube ongoing
 - diameter of the tube: 30mm
 - gas mixture: He/iC₄H₁₀=90:10
- A preamplifier has been designed and developed

<section-header>

Signals from preliminary test

Tested with Sr-90 source

- Preliminary tests show
 - low noise
 - high bandwidth
 - Rise time of peak: a few nanoseconds

Beam test with DC prototype

- Beam tests organized by INFN group @CERN
- Joint efforts of INFN and Chinese groups
 - Data taking
 - Data analysis
 - Optimizing DC simulation
 - Plan to apply ML algorithm on online FPGA

2023/9/7

Summary

- A drift chamber with cluster counting technique for PID is proposed for CEPC the 4th conceptual detector
- Preliminary results of simulation study shows
 - dN/dx has a much better K/π separation power compared to dE/dx
- Prototype test ongoing
 - Prototype test with radioactive source
 - Beam tests
- Work to do
 - Further prototype tests
 - Optimization for detector design and reconstruction algorithm

Thanks!

Backup

2023/9/7

Momentum resolution with fast simulation

• Momentum resolution in low momentum range is benefited with Si+DC

Branching ration using in Delphes

$Z \rightarrow b \overline{b}$: 695899982~7 × 10 ⁸					
Branching ratio	PDG	In background	Size in background		
$f(b \to B_0)$	0.407	0.407	B ₀	566462585	
$\mathcal{B}(B^0\to\pi^+\pi^-)$	5.12×10^{-6}	5.12×10^{-6}	$B^0 \to \pi^+\pi^-$	2900	
$\mathcal{B}(B^0\to K^+K^-)$	7.8×10^{-8}	7.8×10^{-8}	$B^0 \to K^+ K^-$	44	
$\mathcal{B}(B^0\to K^\pm\pi^\mp)$	1.96×10^{-5}	0	$B^0 \to K^\pm \pi^\mp$	0	
$f(b\to B^0_s)$	0.101	0.101	B_s^0	140571796	
$\mathcal{B}(B^0_s\to\pi^+\pi^-)$	7.0×10^{-7}	7.0×10^{-7}	$B_s^0 \to \pi^+\pi^-$	98	
$\mathcal{B}(B^0_s \to K^+K^-)$	2.66×10^{-5}	2.66×10^{-5}	$B_s^0 \to K^+ K^-$	3739	
$\mathcal{B}(B^0_s\to K^\pm\pi^\mp)$	5.8×10^{-6}	1.09×10^{-4}	$B^0_s \to K^\pm \pi^\mp$	15298	

- Signal sample using Pythia8
- Background using Pythia6
- For now, only considering the background of $Z \rightarrow b\overline{b}$