Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters

TIPP 2023 – September 2023 Cape Town, South-Africa

Calorimeters for PFA

HPP 2023

The CALICE Collaboration

Calorimeter R&D for large imaging calorimeters

~270 physicists/engineers from 62 institutes and 18 countries from 4 continents

- Integrated R&D effort
- Acceleration of detector development due to <u>coordinated</u> approach
- MOU 2005

The CALICE Mission

Final goal:

A highly granular calorimeter optimised for the Particle Flow measurement of multi-jets final state at the International Linear Collider

Intermediate task:

Build prototype calorimeters to

- Establish the technology
- Collect hadronic showers data with unprecedented granularity to
- tune clustering algorithms
- validate existing MC models

Roman Poschi

CALICE Collaboration - Prototypes

			acker <mark>ECA</mark> I	HCAL	Muon s	yste
						_
		Silicon ECAL	Scintillator ECAL	Analog HCAL	Semi-Digital HCAL	1
	Active material:	Si Diodes	Scintillator	Scintillator	Gas	
	Granularity [mm ³]	10x10x0.5	45x5x3	30x30x5	10x10x2	
	Absorber:	W	W	W and Fe	Fe	
	Layer x Thickness [mm]:	10x1.4 10x2.8 10x4.2	30x3.5	Fe: 38x21.4 W: 38x10	48x20	
ng	, VCI16	Si-ECAL	Sc-ECAL	AHCAL TIPP 2023	SDHCAL	

Gas

- 10x10x1.15
- W and Fe
- Fe: 38x20
- W: 39x10

- Modern bubble chambers
- Revealing details of hadronic cascades
- Allows for tracking of particles in calorimetric volume => particle separation for PFA
- Rich potential for application/development of modern pattern recognition algorithms

Software Compensation

ScintECAL+AHCAL+TCMT [JINST 13, P12022 (2018)]

Hit Energy Bin Weight

6×10⁻¹

5×10⁻¹

4×10⁻¹ 3×10⁻¹

2×10⁻

Bin 1

1

32.0 GeV 12.0 GeV

4.0 GeV

10 10 AHCAL Hit Energy [MIP]

Bin 8

 10^{2}

significant improvement of energy resolution

Bin 2 | Bin 3 | Bin 4 | Bin 5 | Bin 6 | Bin 7

CALICE

The basis of the technique:

• Local shower density depends on origin of energy deposits • Higher density for electromagnetic subshowers • Lower density for the remaining (hadronic) part

 \rightarrow e/h compensation can be achieved by assigning energydependent weights to hits in global energy sum

• Weights are energy dependent

Software Compensation

« standard » reconstruction

Significant improvement of energy resolution: 10 – 20% compared with

Software Compensation using Machine Learning

- - => No bias from overall shower shape and energy
- Only local shower fluctuations are taken into account

J.Rolph. E. Garutti CALICE Paper with 2018 AHCAL data in preparation

Roman Pöschl

• Improvement w.r.t. to calorimeter response software compensation method applied in previous slides 9

The thresholds weight evolution with the total number of hits obtained by minimizing a $\chi 2$:

 $\chi 2 = (E_{\text{beam}} - E_{\text{rec}})^2 / E_{\text{beam}}$

 $E_{rec} = \alpha (N_{tot}) N_1 + \beta (N_{tot}) N_2 + \gamma (N_{tot}) N_3$

 N_1, N_2 and N_3 : exclusive number of hits associated to first, second and third threshold. α , β , γ are quadratic functions of the total number of hits (N_{tot})

Weighting factors nearly independent of number of hits

Slight dependency for highest threshold (y factor, sensitive to electromagnetic part of had. shower)

(in the second s

80

70F

60

50

40

30F

20

10E

0^t

Intermezzo - Semi-Digital HCAL, Digitisation

Varied Parameters

		$\Delta Q/Q$ [%]	$\Delta N_{\rm tot}/N_{\rm tot}$ [%]	$\Delta N_2/N_2 \ [\%]$	$\Delta N_3/N_3 [\%]$	ΔE/E [%]
Gap	+10 µm	-7.2 ± 0.3	-3.5 ± 0.2	-8.0 ± 0.3	-12.3 ± 0.5	-8.6 ± 0.5
	$\pm 100\mu m$		-7.9 ± 0.2	-13.7 ± 1.8	-19.2 ± 0.2	-6.9 ± 0.2
Т	+1°C	4.1 ± 0.4	1.9 ± 0.2	4.3 ± 0.4	7.5 ± 0.7	4.2 ± 1.1
Р	+10 mbar	-11.1 ± 0.9	-4.5 ± 0.3	-11.3 ± 0.4	-18.7 ± 0.9	-11.9 ± 0.8
SF ₆	+5%	-6.4 ± 0.4	-2.8 ± 0.2	-6.5 ± 0.2	-11.6 ± 0.2	-7.2 ± 0.7

- Typically 2-3%
- account

JINST 18 P03035 (2023)

• Visible effect of varied parameters

• The more precise the data are the more these effects have to be taken into

Semi-Digital HCAL – Detector Response

 π momentum range 3-80 GeV, combining PS and SPS Data

- Linear response within 5-10%
- Consistent results for data taken at PS and SPS
- => stable performance

JINST 17 P07017 (2022)

• Energy resolution reaches ~7.7% at 80 GeV (even without electronics gain correction)

Exploiting the high granularity – Particle Separation

SDHCAL: Separation of 10 GeV neutral hadron from charged hadron [CALICE-CAN-2015-001]

More than 90% efficiency (ϵ) and purity (ρ) for distances \geq 15 cm

SDHCAL: Multi-variate analysis for Particle ID [arxiv:2004.02972, accepted by JINST]

[CALICE-CAN-2017-002]

Roman Pöschl BDT enhance pion selection efficiency at small energies

SiW ECAL: Tracking capabilities to select single π -events

Fine sampling of shower start 2-10 GeV pions in SiW ECAL

Big change observed in FTFP_BERT observed between GEANT4 Versions 9.3 and 9.6

- Only observed in silicon, not for scintillator prototypes;
- Bug in G4 v9.6, fixed in v10.0, however still insufficient energy in v10.1
- Disagreement in individual hit energies between data and G4 affects longitudinal profile
- More on this later

[NIM A794 (2015) 240-254]

5-80 GeV π in SDHCAL

Number of hits in 1-cm rings around shower barycenter

[JINST 11 (2016) P06013]

G4 9.6

10

20

30

-0.1

Pion and proton showers

- Smaller signal if proton is primary particle
 - Proton is Baryon
 - Baryonnumber conservation favors production of baryons in cascade and suppresses meson i.e. π^0 production
- Different hadronic interaction lengths measured for π and protons
- In general GEANT4 reproduces the data with obvious differences for protons

[JINST 10 (2015) P04014]

Physics Prototype – Secondary Tracks in Si ECAL

PhD Thesis, S. Bilokin (LAL) TYL-FJPPL Young Investigator Award NIM A937 (2019) 41-52; e-print: arXiv:1902.06161

- Mean number of secondary tracks increases with beam energy ulletas expected from fixed target kinematics for π --tungsten scattering
- Good reproduction of data by simulation with GEANT4 •

PhD Theses P. Doublet, (LAL,) H. Li (LAL) P2IO PD N. v.d. Kolk (LLR/LAL)

NIM A794 (2015) 240-254; e-print: arXiv:1411.7215

Track multiplicity and track inclination 1-cosò track 5-80 GeV π in AHCAL [JINST 8 (2013) P09001]

 Observables available thanks to high granularity Tests of shower models with discriminative power TIPP 2023

- Number of tracks adequately reproduced by G4 v9.6 at small energies
- Picture less clear at high energies, PPT & BP_BERT_HP closest to data

JINST 12 (2017) no.05, P05009, arXiv:1702.08082

- Clearer picture in summary plot
- FTFP_BERT_HP superior to other Physics lists
- Towards higher energies MC predictions systematically below data
- However, no "catastrophy", discrepancies max. 10%

JINST 12 (2017) no.05, P05009, arXiv:1702.08082

Secondary Tracks in SDHCAL II

The GEANT4 team has implemented the CALICE SiW ECAL in the GEANT4 validation chain

Geant Validation Portal

https:www.geant4-val.cern.ch

CALICESiWTB

L. Pezzotti, CALICE Meeting Valencia, April 2022

TIPP 2023

Roman Pöschl

=> New GEANT4 versions can be validated against CALICE Data

Geant4 Collaboration 2022 - Geant4.10.7.p03

Energy per layer | Beam: pi- | Energy: 10 | Target: CALICE-SiW

Much improved description of Longitudinal shower profile with **Recent G4 versions!**

- Over the past 15 years CALICE collected a rich set of data with granular calorimeters
 - Wide energy range
 - Different type of particles
- These data are unique to test and improve models of hadronic showers
 - Implementation into GEANT4 Validation chain allow for continuous improvement
- Rich "playground" to apply modern pattern recognition algorithms
 - Boosted Decision Trees improve particle separation
 - First analysis using machine learning tools are about to be published
- More data are to come
 - Combinded beam tests AHCAL-SiW ECAL, AHCAL-ScECAL (also talk by Yong Liu)

