

Results from the first science run of the XENONnT experiment

Giovanni Volta, on behalf of the XENON collaboration Max-Planck-Institut für Kernphysik, Heidelberg Technology & Instrumentation in Particle Physics (TIPP2023), Cape Town

X-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

The XENON project

- Dark matter direct detection experiment
- ✓ 180 scientists, 27 institutions, 12 countries
- ✓ Laboratori Nazionali del Gran Sasso (LNGS)
- Dual phase xenon time projection chamber

SKIT

CHICAGO

Chicago

UC San Diego

UCSD

Nikhe

MAX-PLANCE-INSTIT

FÜR KERNPHY

Stockholm

University of

Zurich

翻捕羊大学

東京大学

营航 NAGOYA UNIVERSI

Collaboration Meeting L'Aquila, February 2023

Scintillation photons (S1) and free electrons (\propto S2) are produced from an impinging particle.

⁶ Combination of <mark>S1</mark> and <mark>S2</mark> signals allows for:

✓ 3D position reconstruction

✓ Energy reconstruction: $E_{dep} \propto (n_{\gamma} + n_{e^-}) = ({}^{S1}/g_1 + {}^{S2}/g_2)$

ER/NR discrimination via the charge-to-light ratio

02/15

Scintillation photons (S1) and free electrons (\propto S2) are produced from an impinging particle.

The XENONnT experiment

XENON

 \checkmark

AX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Giovanni Volta, TIPP2023, 7 Sep 2023

- Three nested detectors (muon veto, neutron veto, TPC) in a ~10 m ×10 m water tank \checkmark
 - Three-floor auxiliary building hosting experiment infrastructure

The first XENONnT science data (SR0)

Three ER internal calibration sources: ^{83m}Kr (TPC response monitoring and characterization), ²²⁰Rn (ER response model and data quality cuts development), and ³⁷Ar (low-energy TPC response characterization)

✓ ²⁴¹AmBe external calibration for NR response model and neutron veto characterization

WIMP search

- WIMP search performed in a blinded fashion \checkmark
- \checkmark SR0 (1.1 t \times yr) WIMP search data interpreted using unbinned likelihood in (cS1, cS2, r) parameter space
- Detailed background (4 components) and signal models

- Several signals from a wide range of WIMP masses \checkmark were tested. None of them were statistically significant
- Lowest ER background rate measured in dark matter \checkmark detectors: (15.8 ± 1.3) events/(t × yr × keV), in 4.37 tonnes and within (1, 30) keV

05/15

How did we get there?!

²²²Rn distillation

Dual-phase time projection chamber

-Top TPC grids

-PTFE pillar

-PTFE reflector

Field shaping

-Bottom TPC grids

elements

PMT array_

- ✓ 1.5 m high and 1.3 m in diameter
- ✓ Total of 8.5 tonnes of LXe, 5.9 tonnes of which instrumented (×3 WRT XENON1T)
- 5 electrodes and 2 sets of field shaping elements
- ✓ 494 Hamamatsu R11410-21 3-inch PMTs (×2 WRT XENON1T)
- Materials selected prior to an extensive radioassay campaign

153 PMTs from XENON1T; the remaining 341 PMTs were selected after a meticulous testing campaign.

2021 JINST 16 P08033

Veto systems

- \checkmark NV optically separated from MV by high reflectivity ePTFE panels cage
- ✓ Tag neutrons through the neutron-capture on hydrogen which releases a 2.22 MeV y-ray
 - Measured (68 ± 3) % tagging efficiency @ 600 μ s window and a 5-fold PMT coincidence, and 5 PE threshold
 - 53.3% tagging efficiency with SR0 configuration (250 µs veto window)

Giovanni Volta, TIPP2023, 7 Sep 2023

Purification of XENONnT

- \checkmark Electronegative impurities (mainly O₂ and H₂O) induce a z dependence on the size of S2
- In addition, they can absorb the xenon scintillation photons leading to a worse S1 light collection efficiency
- Improved the inherited gas purification line (high-temperature rare-gas purifier) and installed new liquid purification line (two filters: SAES St707 getter pills and Engelhard Q-5 filter)
- Achieved electron lifetimes greater than 10 ms, greatly exceeding the TPC's maximum drift time of about 2 ms

XENON distillation

- Background mitigation through cryogenic distillation of the xenon
- ✓ Ar/Kr distillation performed before the science run data acquisition
- ✓ ^{nat}Kr concentration achieved: (56 ± 36) ppq, (660 ± 110) ppq in XENON1T
- Novel online distillation column to separate Rn from Xe thanks to its lower vapor pressure
- \sim Online gas-mode Radon distillation, x10 reduction with respect to XENON1T(~12 μ Bq/kg)

Eur. Phys. J. C 77, 275 (2017)

PTEP Vol 2022, Issue 5, May 2022 Eur. Phys. J. C 77, 358(2017) Eur. Phys. J.C 82, 110 (2022)

DAQ and software

Open-source software

- ✓ Triggerless data acquisition
- ✓ Dual gain digitization for top PMT array
- Online processing and live monitoring

Strax Streaming analysis for xenon experiments github.com/AxFoundation/strax

XeDocs

XENON metadata management tool github.com/XENONnT/xedocs zenodo.org/record/7945375 Straxen Streaming analysis for XENON(nT) github.com/XENONnT/straxen

WFSim

The XENON waveform simulator github.com/XENONnT/wfsim

Slow Control system

✓ Based on industrial process control hardware and software from General Electric

- Central failover SCADA, human interface, alarms, user authentication, Historian (5000 data points, ~1 Hz archiving)
- Controllers for each subsystem that can be operated autonomously via a touch screen if necessary
- Web-based platform display of all variables and alarms and API interfaces to DAQ and analysis systems

XENON

-INSTITUT PHYSIK JERG

Low-energy electronic-recoil analysis results

Conclusion and prospects

- ✓ XENONnT was fully assembled in 2020/2021, and successfully commissioned
- First blinded (SR0) WIMP dark matter search with 1.1 tonne-year exposure performed in 2021. More data have been acquired and are currently being analyzed
 - No evidence of new physics from SR0 data
 - Unprecedented low ER background of 16 events/(t×yr×keV)

Further reduction of ER background by improved radon distillation flow path Better neutron tagging efficiency with Gadolinium in the NV

3iovanni Volta, TIPP2023, 7 Sep 2023

Backup slides

Schematic of the XENONnT experiment

XENON

AX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

The dual-phase Time Projection Chamber

Detector response characterization

- Calibrate uniform S1 and S2 via data-driven correction based on ^{83m}Kr calibration source
- Light and charge yield monitoring using ^{83m}Kr and background sources
- ✓ LXe NR response derived via ²⁴¹AmBe calibration data fit
- ✓ Combined fir of ²²⁰Rn and ³⁷Ar for LXe ER response model

Sep 2023

Giovanni Volta, TIPP2023, 7

Detection and selection efficiency

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

- ✓ Detection efficiency:
 - Threshold driven by a 3-fold PMT coincidence for S1
 - Simulation-driven: Full waveforms
 - Data-driven: Bootstrapping from ^{83m}Kr and ³⁷Ar S1
 - Both processed with analysis framework
- $\checkmark\,$ Data quality selection evaluated using ER/NR calibration data
- $\checkmark\,$ ROI defined to fully contain WIMP spectra
 - cS1 [0 pe, 100 pe]
 - cS2 [10^{2.1} pe, 10^{4.1} pe]
- ✓ Total acceptance > 10 % between [3 keV_{NR}, 60 keV_{NR}]

WIMP search fiducial volume

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Giovanni Volta, TIPP2023, 7 Sep 2023

Giovanni Volta, TIPP2023, 7 Sep 2023

XENON

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG