

Coordina

Partner

Partner

Partnei

François Morellet Random Distribution of 40,000 Squares using the Odd and Even Numbers of a Telephone Directory 1960

In-Silico generation of random bit streams

the value of unpredictability

	Organization full name	Organization short name /	Massimo Organization	Cacci Contact person	a Contact person email dom Power s.r.l.
	Univ	epte number	Insubria	name	
nator	Università	UNINS/	University	Massimo	massimo.caccia@uninsubria.it
	degli Studi dell'Insubria	199985534300	.caccia@	r Aqarolao r	npower.eu
er 2	AGH-	AGH/	University	Wojciech	kucewicz@agh.edu.pl
	University of	999844573		ewicz	
	Science and Technology		S	0	
er 3	Nuclear	NI/904737916	SME	drea	abba@nuclearinstruments.eu
	Instruments			Abba	
er 4	Quantum	QFA/	SME	Marcello	marcello.esposito@outlook.it
	Financial	904273092	TIPP	2 Esposito	
		Cape To	own, Sout	h Africa	a, Sept. 6

1. introduction:

WHAT FOR?

Unpredictability to preserve the predictability of our clockwork world

the RSA (Rivest-Shamir-Adleman) public key cryptography protocol uses two random prime numbers of length up to 2048 bits to generate the keys

introduction: 1.

WHAT FOR?

Unpredictability to preserve the predictability of our clockwork world

the RSA (Rivest-Shamir-Adleman) public key cryptography protocol uses two random prime numbers of length up to 2048 bits to generate the keys

1. introduction: WHAT FOR?

Unpredictability to preserve the predictability of our clockwork world

Image encryption is also relying on random single-bit arrays:

automata, Security Comm. Networks 2016; A hybrid image encryption algorithm using chaos and sec.1386 cellular -of-life 10.1002 et al., ame $\frac{\cdot \cdot}{\bigcirc}$ \square B. Murugar Ω S Ń Conway \bigcirc $\mathbf{\nabla}$ 9:63

1. introduction: WHAT FOR?

Unpredictability to preserve the predictability of our clockwork world

Image encryption is also relying on random single-bit arrays:

Networks 2016; algorithm using chaos and Comm. Security encryption automata, hybrid image .c.1386 cellular Φ S of-life 0.1002 \triangleleft σ Φ 2 \overline{O} Ð σ \square Ω Murugar S 5 Conway' \bigcirc 9:63 ш.

1. introduction: WHAT FOR?

"Differential privacy makes it possible for tech companies to collect and share aggregate information about user habits, while maintaining the privacy of individual users."

there is definitely a hype about Random bit streams, not only for crypto but also for gaming, virtual reality, Monte Carlo simulations, IoT, Satellite communication & control and notably Privacy Preservation Procedures

a 2020 paper by the U.S. Census Bureau:

Randomness Concerns When Deploying Differential Privacy

Simson L. Garfinkel US Census Bureau Suitland, MD simson.l.garfinkel@census.gov

Philip Leclerc US Census Bureau Suitland, MD philip.leclerc@census.gov

true data. Thus, while the data for the Decennial Census can be stored in a few tens of gigabytes, protecting its output statistics will require the DAS to use roughly 90TB of random data.

a 2023 article on FORBES:

Challenges Of Zero-Knowledge Proof Technology For Compliance

Alexander Ray Forbes Councils Member

Forbes Business Council COUNCIL POST | Membership (fee-based)

Problem 2: Vulnerability To Random Number Generator Attacks

market potential: 2.

D E[™]

INSI

QUANTUM

TECHNOLOGY

			Tota	l Market by	Product Type					
	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Chips	1.2	48.5	159.2	455.6	1,038.7	1,771.4	2,688.8	3,672.1	4,877.9	6,544
Extension Cards	85.6	210.7	1,014.7	1,560.8	1,768.0	2,388.7	2,915.5	3,414.4	3,841.2	4,577
Standalone Devices	180.0	1,530.0	2,594.5	3,658.0	3,356.7	3,035.8	3,712.1	3,874.1	3,904.8	3,134
Total (\$M)	266.8	1,789.2	3,768.4	5,674.4	6,163.3	7,195.9	9,316.5	10,960.7	12,623.9	14,256
[

Installed Units vs Time

the essence 3 o f

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

It is always nice to consider an artist's point of view:

"With Random Distribution, the purpose of my system was to cause a reaction between two colours of equal intensity. I drew horizontal and vertical lines to make 40,000 squares. Then my wife or my sons would read out the numbers from the phone book (except the first repetitive digits), and I would mark each square for an even number while leaving the odd ones blank. The crossed squares were painted blue and the blank ones red. For the 1963 Paris Biennale I made a 3-D version of it that was shown among the Groupe de Recherche d'Art Visuel installations (and re-created it again on different occasions). I wanted to create a dazzling fight between two colours that shared the same luminosity. This balance of colour intensity was hard to adjust because daylight enhances the blue and artificial light boosts the red. I wanted the visitors to have a disturbing experience when they walked into this room – to almost hurt their eyes with the pulsating, flickering balance of two colours. I like that kind of aggression."

excerpt from https://www.tate.org.uk/context-comment/articles/65-38-21-4-72

François Morellet (1926-2016) Random Distribution of 40,000 Squares using the Odd and Even Numbers of a Telephone Directory 1960 RINDOM MOMA, New York

essence of random number generation: 3. h e HOW TO GENERATE AN UNPREDICTABLE

RANDOM NUMBER?

PRNG

(PseudoRandom Number Generators) are essentially a piece of software code \Rightarrow they deterministic and in principle

predictable

$$x_n\equiv ax_{n-1}+b\ (mod\ m)$$

an example of linear congruential generator

J. Von Neumann: Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Von Neumann, John (1951). "Various techniques used in connection with random digits" (PDF). National Bureau of Standards Applied Mathematics Series. 12: 36–38.

http://glee.wikia.com/wiki/File:281735_1342370254-coin-flip.gif.gif

of random number generation: 3 essence h e HOW TO GENERATE AN UNPREDICTABLE

RANDOM NUMBER?

PRNG

(PseudoRandom Number Generators) are essentially a piece of software code \Rightarrow they deterministic and in principle

predictable

$$x_n\equiv ax_{n-1}+b\ (mod\ m)$$

an example of linear congruential generator

J. Von Neumann: Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Von Neumann, John (1951). "Various techniques used in connection with random digits" (PDF). National Bureau of Standards Applied Mathematics Series. 12: 36–38.

TRNG

(True Random Number Generators) are essentially coin flipping, namely get bits out observing unpredictable natural phenomena

http://glee.wikia.com/wiki/File:281735_1342370254-coin-flip.gif.gif

3. the essence of random number generation: HOW TO GENERATE AN UNPREDICTABLE

HOW TO GENERATE AN URANDOM NUMBER?

PRNG

(PseudoRandom Number Generators) are essentially a piece of software code ⇒ they deterministic and in principle

predictable

$$x_n\equiv ax_{n-1}+b\ (mod\ m)$$

an example of linear congruential generator

J. Von Neumann: Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Von Neumann, John (1951). "Various techniques used in connection with random digits" (PDF). National Bureau of Standards Applied Mathematics Series. **12**: 36–38.

TRNG

(True Random Number Generators) are essentially coin flipping, namely get bits out observing unpredictable natural phenomena

http://glee.wikia.com/wiki/File:281735_1342370254-coin-flip.gif.gif

3. the essence of random number generation:

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

PRNG

(PseudoRandom Number Generators)

Fast, cheap & reasonably easy. However:

software Random Number Generation is PSEUDO
code can be bugged
and it may have a BACKDOOR

Attack Trends Editor: David Ahmad, drma@mac.cd

Two Years of Broken Crypto

Debian's Dress Rehearsal

2006

Ehe New	Horl	c Eimes			U.S						Search A	II NYTime	s.com	Go
WORLD U	U.S. 1	N.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH	SPORTS	OPINION	ARTS	STYLE	TRAVEL	JOBS	REAL ESTATE	AUTO
POLITICS	EDU	JCATION TEX	(AS											
		Doc	uments sho lude worki	w that the N.S.A ng with industry and pushing int	A. has been to weaken	waging a w encryptior	var agains 1 standard	t encryption ls, making o	n using lesign c	a battery hanges to	of method cryptogra	ls that aphic	on	
		Doc	uments sho lude worki	w that the N.S.A	A. has been to weaken	waging a w encryptior	var agains 1 standard	t encryption ls, making o	n using lesign c	a battery hanges to	of method cryptogra	ls that aphic		7
		Doc	uments sho lude worki	w that the N.S.A ng with industry	A. has been to weaken	waging a w encryptior	var agains 1 standard	t encryption ls, making o	n using lesign c	a battery hanges to	of method cryptogra	ls that aphic	on 201	3

TRNG

(True Random Number Generators)

Extracting bits from the observation of natural phenomena is not trivial and you may suffer from

"coin bias" by the embodiment of a great principle

weakness against environmental parameters

- a significant "attack surface", conditioning the device in use
- low bit rate

2

the Random Power principle:

HOW DO WE DO IT?

Inspired by Forrest Gump, we say:

RADIOACTIVE IS AS RADIOACTIVE DOES

emission by a radioactive source is due to the quantum laws of Nature

decays of unstable nuclei are unpredictable

the sequence of detected decays can be used to generate random bits with different recipes:

- Check the parity of the number of pulses in a time window
- pre-define the time window in a way that is equally like to have or not to have a single pulse

The idea behind handy, cost effective, simple, robust, providing sequences of pulses mimicking radioactive decays.

Sequence of pulses by the decay of a radioactive source in a nuclear physics detector

is to replace a radioactive source with something safer, more

TUE SEP 19 22:36:40 2017

> The generator, an array of Single Photon Avalanche Diodes, namely p-n junctions operated beyond the breakdown voltage:

A pioneering development by Prof. S. Cova at Politecnico di Milano

Cova, S., Ghioni, M., Lacaita, A. L., Samori, C., and Zappa, F. "Avalanche photodiodes and quenching circuits for single-photon detection", Applied Optics, 35(12), 1956–1976 (1996)

Simulation of an avalanche development

- Very shallow p-n junction $\rightarrow \sim 1 \, \mu m$
- High electric field
- Mean free path

→ > 3 x 10⁵ V/cm **→** ≈ 0.01 µm

Courtesy of Ivan Rech, Politecnico di Milano [50 µm cell size]

Multiplication by about 1 000 000

Photon induced charge carrier generation RNDOM POWER

> The generator, an array of Single Photon Avalanche Diodes, namely p-n junctions operated beyond the breakdown voltage:

A pioneering development by Prof. S. Cova at Politecnico di Milano

Cova, S., Ghioni, M., Lacaita, A. L., Samori, C., and Zappa, F. "Avalanche photodiodes and quenching circuits for single-photon detection", Applied Optics, 35(12), 1956–1976 (1996)

Simulation of an avalanche development

- Very shallow p-n junction $\rightarrow \sim 1 \, \mu m$
- High electric field
- Mean free path

→ > 3 x 10⁵ V/cm **→** ≈ 0.01 µm

Courtesy of Ivan Rech, Politecnico di Milano [50 µm cell size]

Multiplication by about 1 000 000

Photon induced charge carrier generation RNDOM POWER

the state-of-the-art room T detectors with single photon sensitivity and photon-number resolving capability:

SiPM may be seen as a collection of binary cells, fired when a photon in absorbed

[in principle, a NATIVE DIGITAL DEVICE]

Not indexed arrays of SPAD, with a single output node, are nowadays known as Silicon Photomultipliers,

histogram of the response to a high statistics of low intensity light pulses

The name of the game: charge carriers can be generated "spontaneously", also when no light is illuminating the sensor

A lesson from the past, when this was known since the early days of the Silicon technology development:

1. INTRODUCTION

MOST reverse biased p-n junctions in silicon have their avalanche breakdown caused by microplasma effects. Microplasmas are small regions within the junction,¹ where a local disturbance of the electrical field is believed to reduce the breakdown voltage to a value below the breakdown voltage of the surrounding uniform junction.²⁻⁵ As voltage is increased from low values microplasma breakdown is generally characterized by random "on-off" current fluctuations so long as currents remain below a critical value (40 to 120 μ A).⁶⁻⁸

from paper

PHYSICAL REVIEW

VOLUME 94, NUMBER 4

Avalanche Breakdown in Silicon

K. G. MCKAY Bell Telephone Laboratories, Murray Hill, New Jersey (Received December 23, 1953)

JOURNAL OF APPLIED PHYSICS

Model for the Electrical Behavior of a Microplasma*

VOLUME 35, NUMBER 5

ROLAND H. HAITZ[†]

Shockley Laboratory, Clevite Corporation Semiconductor Division, Palo Alto, California (Received 5 November 1963)

FIG. 5. Avalanche current as a function of time at low temperatures. The group character of the avalanche pulses is obvious.

The complex current fluctuations observed in connection with microplasma breakdown can be explained by a simple model containing two constants: extrapolated breakdown voltage V_b and series resistance R_s ; and two continuous probability functions: turnoff probability per unit time $p_{10}(I)$ as a function of pulse current I and turn-on probability per unit time p_{01} . Experimental methods allowing an accurate measurement of these four quantities are described. The new concept of an extrapolated breakdown voltage V_b is discussed based on two independent measurements: one of secondary multiplication and the other of instantaneous current, both as a function of voltage. Within the experimental accuracy of 20 mV both methods extrapolated to one and the same breakdown voltage. The turnoff probability $p_{10}(I)$ is determined by a new combination of experimental techniques to cover the current range from 5 to 70 μ A with a variation of 11 decades for $p_{10}(I)$. The observation of a narrow turnoff interval is explained quantitatively.

VOLUME 36, NUMBER 10 F APPLIED PHYSICS

Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes^{*}

ROLAND H. HAITZ

Shockley Research Laboratory, Semiconductor Division of Clevite Corporation, \$ Palo Alto, California (Received 16 November 1964)

The name of the game: charge carriers can be generated "spontaneously", also when no light is illuminating the sensor, by quantum tunnelling

Fig. 8. Representation of the different sources of primary dark events and their location in the SPAD structure.

after A. Gola, C. Piemonte, NIM A926 (2019) 2-15

Key issues:

* in SiPM, the Dark Count Rate is O(1 KHz)/cell, 50 µm pitch (it may be higher for SPAD arrays in CMOS technology)

- * provided the nature of the Dark Pulses, we have a significant dependence on Temperature
- * forget-me-not: the Over-voltage is affecting the triggering probability

Thermal generation of carriers by states in the bang-gap

(Shockley-Read-Hall statistics), where trapping and de-trapping is increased by the high electric field in the junction. The Generation rate can be written as:

$$G = \frac{n_i}{2 \cdot \cosh\left(\frac{E_0 - E_t}{kT}\right)} N_t \sigma v_{th} = \frac{n_i}{\tau_{g0}}$$

 $E_0 =$ Fermi level E_t = trapping level n_i = intrinsic carrier concentration N_t = trapping concentration σ = trapping cross section v_{th} = thermal velocity

The essence: turning unpredictable "Dark Pulses" into bits

1. tag & time stamp the occurrences of the random pulses

2. analyse the time series of the pulses:

*bit 1: **Δt**₁₂ vs **Δt**₃₄ *bit 2: Δt₂₃ vs Δt₄₅ *bit 3: **Δt₅₆** vs **Δt₇₈** *bit 4: **Δt₆₇ vs Δt₈₉**

the Random Power principle:

This is the essence of

RIND0M

providing virtually endless streams of

shielded against any bias by the fundamentals of **Quantum Mechanics**

- Italian Patent granted in Sept. 2020
- EU & US patent granted in 2022
- in the examination phase in China, JP, Korea (since April 2021)

A genuine Q(quantum)-True Random Number Generator, namely a Quantum Coin Flipper

RANDOM BITS → CRYPTOGRAPHIC KEYS

RINDOM POWER

5. glance at competitors: a ARE WE ALONE IN THE UNIVERSE?

		Rindom Polver
History	Established in 2001	Starting-up
Technology floor	QTRNG platform + services	Minimum Viable Product
Complexity	HIGH	LOW
Efficiency	LOW	HIGH
Robustness	LOW	HIGH
Miniaturisation	BIG chip	SMALL chip viable
Cost of the single generator board	1000+ EUR	500 EUR

https://www.idquantique.com N Quantiq

17

+ a handful of other players:

Major advantage of the Random Power technology, fully CMOS compliant, offering the possibility to integrate the device into a custom chip with advanced features

5. glance at competitors: a ARE WE ALONE IN THE UNIVERSE?

		Rindom Polver
History	Established in 2001	Starting-up
Technology floor	QTRNG platform + services	Minimum Viable Product
Complexity	HIGH	LOW
Efficiency	LOW	HIGH
Robustness	LOW	HIGH
Miniaturisation	BIG chip	SMALL chip viable
Cost of the single generator board	1000+ EUR	500 EUR

https://www.idquantique.com N Quantiq

17

+ a handful of other players:

Major advantage of the Random Power technology, fully CMOS compliant, offering the possibility to integrate the device into a custom chip with advanced features

6. state - of - the - art:

WHERE ARE WE NOW - completed developments

The MINIMUM VIABLE PRODUCT [MVP], the progenitor of a class of Quantum Random Bit Generators:

Developed thanks to the **seed capital [100 000 €]** granted by

which selected Random Power as one of 170 "breakthrough projects" out of 1211 submissions [May 2019- October 2020]

Qualified according to the NIST standards (National Institute of Standard & Technology)

3.5 cm

8 cm

19

8 cm

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

3.5 cm

8 cm

Amplification & discrimination

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

3.5 cm

8 cm

FPGA embedding a proprietary TDC and implementing the bit extraction + real-time sanity checks (MONOBIT&RUNS) + conditioning function (SHA-256)

Amplification & discrimination

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

6. state-of-the-art: WHERE ARE WE NOW

3.5 cm

8 cm

FTDI chip for data routing on the USB

FPGA embedding a proprietary TDC and implementing the bit extraction + real-time sanity checks (MONOBIT&RUNS) + conditioning function (SHA-256)

Amplification & discrimination

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

6. state-of-the-art: WHERE ARE WE NOW

8 cm

Upon request, bits can be routed on pins

FTDI chip for data routing on the USB

FPGA embedding a proprietary TDC and implementing the bit extraction + real-time sanity checks (MONOBIT&RUNS) + conditioning function (SHA-256)

Amplification & discrimination

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

6.	s t a	te-	of-	t h	e -	a r t	•
----	-------	-----	-----	-----	-----	-------	---

									final	AnalysisRe	port_PART2.t>	kt
ES	ULTS	FOR	THE	UNI	FORM	ITY ()F P-	-VAL	JES A	ND THE PR	OPORTION OF	PASSING SEQUENCES
	gene tFW8_									andom_Pow	er/ProgramAn	dTechnical/ATTRACT_Eu_Board_Fw8/
 C1										P-VALUE	PROPORTION	STATISTICAL TEST
 100	110	 95	93	 90	- <u></u> 90	 114	101	- <u></u> -	 109	0.682823	986/1000	Frequency
97	102	94	103	107	97	105	106	102	87	0.941144	993/1000	
95	95	101	100	113	106	93	100	89	108	0.842937	989/1000	CumulativeSums
94		117	90	93	91	89	96	123	95	0.125927	987/1000	CumulativeSums
L00	93		112	93	112		110	101	89	0.647530	992/1000	
.05	91	96	80	121	99					0.092597	989/1000	
L00			110	97	88			99		0.148653	992/1000	
95	109	103		85	94	90	100	106	105	0.630872	995/1000	
.04	98	91	89	104	90		104	115	95	0.632955	987/1000	
11		112	88	96		100			98	0.798139	981/1000	
	100	93		101	109	93	87	117	95	0.514124	986/1000	
86	94	119			98		103	98	101	0.626709	998/1000	
	112		103	91	89	94	99	115		0.498313	989/1000	
	106 92	101 98	109 96	86		111	96	94	94	0.249284 0.682823	988/1000	
114 117	92 87		90 101	105	105 106	101 91	100 94	83 105	106 101	0.697257	992/1000 991/1000	
90	93		101	100 99	89		94 116			0.689019	991/1000	
90	93 108	97	99	99 116	09 104	98	85	108 96	97	0.743915	991/1000	
88	93		101		94	111	99	100	99	0.829047	988/1000	
96	97	103		106	108		97	93	83	0.651693	987/1000	
108	95		109	84		101			120	0.388990	988/1000	

series of tests on non-overlapping templates

80	98	115	100	98	115	107	91	83	113	0.106877	993/1000	OverlappingTemplate
86	116	121	101	91	87	96	101	87	114	0.084037	990/1000	Universal
97	90	107	116	110	95	103	93	92	97	0.668321	987/1000	ApproximateEntropy
70	62	54	60	55	66	60	63	77	65	0.668486	626/632	RandomExcursions
62	69	58	70	58	61	56	71	63	64	0.909311	626/632	RandomExcursions
60	53	59	62	76	72	60	59	66	65	0.681642	620/632	RandomExcursions
70	64	83	45	62	69	70	65	51	53	0.040275	622/632	RandomExcursions
66	69	69	73	73	73	38	49	52	70	0.009611	627/632	RandomExcursions
65	52	67	82	68	54	51	63	72	58	0.136536	627/632	RandomExcursions
61	55	60	72	66	71	67	56	55	69	0.711017	626/632	RandomExcursions
47	61	62	58	71	63	71	61	68	70	0.553450	625/632	RandomExcursions
60	57	66	62	58	61	67	67	73	61	0.941564	624/632	RandomExcursionsVariant
60	70	43	60	64	58	58	88	64	67	0.030676	622/632	RandomExcursionsVariant
66	58	51	65	51	61	72	72	71	65	0.447593	624/632	RandomExcursionsVariant
63	67	59	46	67	60	68	70	73	59	0.483876	623/632	RandomExcursionsVariant
61	67	58	69	63	74	48	60	66	66	0.615645	624/632	RandomExcursionsVariant
75	62	63	58	63	55	66	54	71	65	0.717488	624/632	RandomExcursionsVariant
68	63	66	54	57	65	63	67	56	73	0.827336	620/632	RandomExcursionsVariant
75	54	64	57	65	64	56	62	64	71	0.733547	623/632	RandomExcursionsVariant
76	68	70	56	55	50	66	52	64	75	0.176734	624/632	RandomExcursionsVariant
89	63	57	59	59	55	58	68	63	61	0.134074	624/632	RandomExcursionsVariant
67	68	61	57	60	69	66	63	63	58	0.979797	624/632	RandomExcursionsVariant
65	64	62	71	58	68	67	53	60	64	0.917568	626/632	RandomExcursionsVariant
71	58	56	62	75	62	67	64	53	64	0.701268	626/632	RandomExcursionsVarian
64	71	49	62	61	69	69	59	59	69	0.694743	626/632	RandomExcursionsVariant
61	65	54	59	63	63	64	76	62	65	0.879806	626/632	RandomExcursionsVariant
58	55	57	67	65	66	54	66	76	68	0.642077	629/632	RandomExcursionsVariant
46	64	65	61	64	61	81	59	75	56	0.150772	624/632	RandomExcursionsVariant
50	56	65	67	74	67	51	63	73	66	0.353061	629/632	RandomExcursionsVariant
106	107	87	107	94	109	100	83	92	115	0.352107	989/1000	Serial
105	100	94	98	96	95	96	101	95	120	0.790621	991/1000	Serial
105	97	89	101	96	106	92	112	105	97	0.875539	991/1000	LinearComplexity
											th the except	ion of the
										<pre>ximately =</pre>	980 for a	
sample size = 1000 binary sequences.												

The minimum pass rate for the random excursion (variant) test is approximately = 618 for a sample size = 632 binary sequences.

For further guidelines construct a probability table using the MAPLE program provided in the addendum section of the documentation.

bit string:

bits in a string

A proto-randomness farm based on 10 boards have been collecting about 1.5 Tb, qualified through the NIST and TESTU01 suites.

- Results show that the stream looks extremely "white", essentially with no failures on the raw data beside what can be statistically expected.
- A SHA256 vetted conditioning function firmware implemented
- Two tests have been implemented in firmware to guarantee realtime sanity checks:
- * MONOBIT: essentially testing the asymmetries between 0's and 1's in a
- * RUNS: testing the statistics of the number of sequences of identical

WHAT'S NEXT? on-going developments & beyond

21

7. on going developments: (TRNG)

NIST Special Publication 800-90B

Recommendation for the Entropy Sources Used for Random Bit Generation

Recommendation for Random Number Generation Using Deterministic Random Bit Generators

How to design and test entropy sources to be **Approved DRBG mechanisms** used to feed Deterministc Random Bit **Generators (DRBG)**

* pre-requisites for entering the programs eventually leading to the FIPS-140-3 certification * impacting on the design of both the ASIC, the multiple generator board and its embodiment in a "system"

BEYOND A PURE TRUE RANDOM NUMBER GENERATOR

NIST Special Publication 800-90A Revision 1

(Second Draft) NIST Special Publication 800-90C

Recommendation for Random Bit Generator (RBG) Constructions

Construction of RBG from A+B

Entropy consumer

A Deterministic Random Bit Generator (DRBG), as of the NIST recipe

***** Essentially, the True Random Bits generated by Random Power are used to seed a NIST approved Pseudo Random **Bit Generator**

* when reseeding occurs after EVERY iteration of the Deterministic machine, you obtain the highest level of security, namely **Prediction Resistance***

* QUOTING NIST: Prediction resistance means that a compromise of the DRBG internal state has no effect on the security of future DRBG outputs.

design a FIPS-compliant ASIC embedding a SPAD array in standard CMOS technology:

- **raw bit rate: 1 Mbps**
- FIPS mode (NIST DRBG): 4096 Bytes in 1050 µs (31.2 Mbps) with prediction resistance
- **bits delivered in an encrypted stream expected power: 100 mW**
- expected to be back from the foundry in Dec. 2023

Common blocks

design a scalable multi-generator system based on an array of SiPM and a LIROC front end ASIC by LIROC

Table 2 - LIROC main features and performances

Detector Read-Out	SiPM, SiPM array
Number of Channels	64
Signal Polarity	Positive or Negative (selectable ASIC-wise)
Sensitivity	Trigger on 1/3 of photo-electron
Timing Resolution	Better than 20 ps FWHM on single photo-electron
Resolution	Better than 5ns double-peak separation on single photo-electron
Dynamic Range	· · · ·

Where a series and a series of the bold o

design a FIPS-compliant ASIC embedding a SPAD array in standard CMOS technology:

- **raw bit rate: 1 Mbps**
- FIPS mode (NIST DRBG): 4096 Bytes in 1050 µs (31.2 Mbps) with prediction resistance
- **bits delivered in an encrypted stream expected power: 100 mW**
- expected to be back from the foundry in Dec. 2023

design a scalable multi-generator system based on an array of SiPM and a LIROC front end ASIC by LIROC

v1.0 delivered in July 2023, currently under test

8. how do we do it?:

Phase II:

submission Sept. 20th, 2021

notification of approval Jan. 31st, 2022

- Duration: May 2022 to August 2024
- funding: 2 MEUR
- selection & competitiveness:

1211 submissions in Phase 1 → 170 approved → 87 submissions for phase II (68 R&D proposals) → 18 R&D approved

combined success rate: 18/1211 = 1.5%, so we did well!

8. how do we do it?:

Our consortium:

leading party

Organization

Organization type¹

Contact

weeroc

Contact person email

NDOM POMER

18 man-years dedicated to the project

9 b u t n o t l a s t least: A BIT OF HISTORY

Unpredictability of the generated random bit sequence is assessed using the NIST standards

2016

2018

The principle at the base of RandomPower emerges, as result of a genuine serendipity event. Initial tests performed with lab equipment

2017

A demo board is designed, commissioned and qualified;

Italian patent filing completed (October)

Iaunch at the CyberSecurity week in Le Hague (October)

submission of the **ATTRACT** Phase 1 proposal (October) (100 kEUR)

2019

- **End** of the **ATTRACT Phase 1** project (October)
- **Full characterisation** of the single generator board
- **winner** of the **Start-Cup competition** (regional level; 20 kEUR)
- **winner** of two special prizes by investors at PNI, start-up competition at national level
- Italian patent granted

Submission of the **ATTRACT** Phase 2 proposal (September) Engineering of the next investment round (including Exploitation agreements)

	29				
T Phase 2 proposal	Chip delivery (February)				
	Chip qualification and packaging (May-June)				
se 2 (May)	v1.0 of the FIPS compliant sw architecture for the multi-age board FIPS 140-3 certification started				
ne TESTU01 suite, (1.5 Tb qualified) enture int'l competition	 Business plan v2.0 End of the ATTRACT Phase 2 (August?) Execution of the next investment round Engineer co-development of applications GO TO MARKET! 				
2023					
real-time sanity check implement	ted 2024				
design of the multi-gen board co v1.0	mpleted (April)				
commissioning of v1.0 sta qualification expected by December					
chip submission expected by minimum	id-September				

е

<u>Rindom</u> Polver

KINDOM

www.randompower.eu

Established in June 2021

This project has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222

Join us, we will be happy to walk with you!

2020 Winner - ICT

2020 Winner of 2 "special prizes"

GIVING IDEAS THE HIGHEST VALUE

2021 PoC investment by LifTT, a VC located in Torino (ITALY)

2022 winner @the Falling Walls venture competition for curious people: here & and there

I AM A FALLING WALLS WINNER

CONTACT US at:

<u>massimo.caccia@randompower.eu</u>

marcello.esposito@randompower.eu

\$ lorenza.paolucci@randompower.eu

