

The DEPFET based all-silicon module for the Belle II Pixel Detector PXD

▷ PXD at Belle II

└→ Construction, performance, and lessons learned

▷ Very brief outlook beyond HEP application

DEPFET PXD Collaboration and the team at the Semiconductor Laboratory of the Max Planck Society

- \triangleright Higher luminosity, KEKB \rightarrow SuperKEKB "B factory"
 - \rightarrow goal Lumi 6 x 10³⁵ cm⁻²s⁻¹, achieved 4.7 x 10³⁴ cm⁻²s⁻¹ in June 2022
 - → Higher event rate, higher background, higher radiation damage ...
 - → Ongoing long shutdown since July 2022 until end 2023

- \triangleright Belle II
 - └→ Upgraded detector
 - → Physics data-taking since March 2019
 - \rightarrow 427.8 fb⁻¹ recorded until June 2022
 - \rightarrow Goal is 50 ab⁻¹ during lifetime (203x)

Belle II PXD

 $\sim 2\,\mathrm{m}$

Capacitors

	L1	L2
# ladders (modules)	8 (16)	12 (24)
Distance from IP (cm)	1.4	2.2
Thickness (μm)	75	75
#pixels/module	768x250	768x250
#of address and r/o lines	192x1000	192x1000
Total no. of pixels	3.072x10 ⁶	4.608x10 ⁶
Pixel size (μm²)	55x50 60x50	70x50 85x50
Frame/row rate	50kHz/10MHz	50kHz/10MHz
Sensitive Area (mm ²)	44.8x12.5	61.44x12.5

DAQ, data reduction Data Optical fiber **ROI** selection $\sim 0.5\,\mathrm{m}$ Handling Optical transmitter Dock Box Hub ■ Optical fiber FTSW, clock, trigger Camera link cable (DHH) Ethernet cable Optical fiber (High speed data) Patch ∎ Ethernet Infiniband cable Slow control Panel Power cable Power cable Ethernet \mathbf{LMU} Power cable \mathbf{PS} Capacitors

 $\sim 15\,{\rm m}$

TIPP 2023, Cape Town, September 2023

DCDB (Drain Current Digitizer)

Amplification and digitization

- UMC 180 nm
- 256 input channels
- 8-bit ADC per channel

DHPT (Data Handling Processor) First data compression

- TSMC 65 nm
- CM and pedestal correction
- Data reduction (zero suppression)
- Drives data link

SwitcherB

- AMS/IBM HVCMOS 180 nm
- Gate and Clear signal
- 32x2 channels

▷ Pixel array operated in "rolling shutter" mode, 20µs/f

 \rightarrow Only 4/768 rows active a time \rightarrow low power in active area

module assembly overview

Flip Chip of ASICs (~240°C):

- Bumped ASICs have the same solder balls (SnAg)
 DHP bumping at TSMC, DCD bumping via Europractice
 - SWB bumping on chip level
- ▷ Flip Chip of PXD modules on custom made support plates

SMD placement (~200°C):

- ▷ Passive components (termination resistors, decoupling caps)
- ▷ Dispense solder paste, pick, place and reflow

Kapton attachment (~170°C), wire bonding:

- ▷ Solder paste printing on kapton,
- \triangleright Wire-bond, wedge-wedge, 32 μ m Al bond wires

> 71 modules (+46 for PXD2) attached to pre-tested kapton cables

- → Module assembly yield ~96% (after rework)
- \rightarrow ~50% contingency, both for PXD1 and PXD2
- ▷ collaborative effort (Bonn, Göttingen, HLL, MPP, IFIC, DESY)
 - → script based, automated procedure
 - → optimize/confirm ASIC and DEPFET parameters
 - → linear response of the ADC, pedestal compression
 - → Off-module link of DHP
 - → charge collection (DEPFET voltages: Drift, HV, Clear-Off)
- ▷ Damage and repair after testing (PXD1 and PXD2)
 - → 2 x kapton cables revealed shorts (modules ok after kapton exchange)
 - \rightarrow 1 x module: mechanically damaged (can not be depleted)
 - → 2 x modules: SwitcherB damaged at test
 - \rightarrow 4 x modules suffered from cooling malfunction (condensation)

After characterization: Sr90 spectrum (Bonn Uni)

- ✓ 291 unresponsive single pixels
- ✓ 251 noisy pixels
- ✓ 99.85% active pixels

ladder assembly and installation

- \triangleright Join two modules to a ladder \rightarrow "ladder gluing"
 - \mapsto v-grooves for small ceramic inserts on the back side \rightarrow Reinforcement of the joint
- > **Yield issue**: out of 17 assembled ladders, 5 were lost due to damage at assembly
 - → Resolved for PXD2
- ▷ Install de-scoped PXD1 to meet the schedule for the start of data taking (March 2019)
 - → Full L1 (8 ladders) and 2/12 ladders in L2

▷ Completion of PXD ("PXD2") with new modules accomplished 2023

PXD1: operation in Belle II

- ▷ PXD in operation in Belle II March 2019 until June 2022 with good performance
 - → First application of DEPFET sensors in HEP!
- ▷ S/N around 40, stable over time and with good homogeneity
 - \mapsto Narrow and stable pedestals and noise
- \triangleright Efficiency to find in L1 or L2 ~ 96%
 - → ~99% efficiency in fiducial region
- ▷ Impact parameter resolution close to expectations \rightarrow data: $\sigma(d_0) = 14.2 \mu m \rightarrow$ about 2x better than Belle

PXD1: Physics Performance

VXD Physics Performance

- Belle II proper time resolution ~2x better than Belle
- thanks to PXD precision and smaller beam pipe diameter
- Belle II published world-leading lifetime measurements on charmed mesons: D⁰/D⁺

surprises I

- ▷ Damage due to beam losses/incidents
 - → Origin of beam losses not completely clear (beam-dust events? machine glitches?)
- \triangleright Resulted in collimator damage, quench of the QCS magnet system ...
- \triangleright Huge instant radiation dose of about 300 rad in ~40 μ s in the PXD
 - \mapsto Permanent damage of entire rows \rightarrow "dead", inefficient regions
 - → Overall efficiency loss of about **3 percentage points** at the end of run1
- $\,\triangleright\,\,$ Origin of PXD damage traced back to SEE in the Switcher HV-CMOS chip
 - □→ Reproduced at MAMI accelerator in Mainz
 - \mapsto electron pencil beam scanned over DEPFET array and Switcher chip

- ▷ Mitigation (from PXD side and SuperKEKB) ongoing
 - \mapsto Accelerate beam abort signal and power-down of modules
 - → Root cause in the switcher chip understood (new version under production, tests pending)

L1 hitmaps after beam loss in May '21

surprises II

- \triangleright Backplane (HV, depletion) is increasing from tens of μ A to >1mA
 - → Most affected modules are currently in +x direction
 - \rightarrow This is where the background is 2x higher ...
- ▷ Module performance not affected, noise and signal stable
 - → Also negligible contribution to overall power consumption
- arepsilon Issue: the power supply system is not designed to supply that high current
 - → Some PS upgraded already in PXD1, for PXD2 PS will be able to supply up to 28 mA
- \triangleright Root cause
 - \mapsto Guard rings on the back side not fully functional at higher radiation doses
- $Descript{Confirmed}$ by dedicated photon irradiations on test modules

- x-ray lab campaigns: expect currents saturate at certain dose
- not observed in PXD yet

- \triangleright (incomplete) PXD1 in operation from May 2019 until June 2022
- ▷ (complete) PXD2 assembled with leftover modules from PXD1 and newly produced sensors and assembled modules and ladders
- ▷ Installed in Belle July 2023, currently under commissioning, run2 start scheduled December 2023

PXD2 - Pedestals (200 frames)

Same module concept, different application

- ▷ Ultrafast direct electron detection for 300 keV TEM 80 kHz frame rate for 1 Mpix camera
 - \rightarrow Sensor 50 µm (optionally 30 µm)
 - → Optimized 60 µm DEPFET pixel cell with high dynamic range (800 k signal electrons)
 - └→ Challenging operation in in very narrow UHV chamber

- ▷ Belle II PXD: the first full vertex detector based on DEPFETs!
 - → Overall performance of the modules meets the requirements at SuperKEKB
 - → Run1 successfully finished with descoped PXD1
 - → Run2 with complete PXD2 scheduled to start end 2023
 - → There were a few surprises, many lessons learned
 - → One of the most important ones: have to make the system more user friendly!
- > The concept of the DEPFET all-silicon module finds now new applications in a different field
- \triangleright This is not the end, there is more to come
 - → Integration of micro-channels for cooling under way
 - → New generation of DEPFETs with improved characteristics finished and being tested
 - → Higher amplification, smaller pixels, high dynamic range, improved radiation tolerance

